当前位置: X-MOL 学术Plasma Chem. Plasma Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of Groove on Metal Vapour Behavior and Arc Characteristics in TIG Welding of High Manganese Stainless Steels
Plasma Chemistry and Plasma Processing ( IF 3.6 ) Pub Date : 2021-11-15 , DOI: 10.1007/s11090-021-10218-y
Shinichi Tashiro 1 , Manabu Tanaka 1 , Satoshi Miki 2 , Yuji Kisaka 2 , Fumiaki Kimura 2 , Anthony B. Murphy 3 , Tomone Suwa 4 , Yoshikazu Takahashi 4
Affiliation  

In arc welding, a groove is often used between metal pieces being welded. In tungsten inert gas welding of high-manganese stainless steels with arc voltage control (AVC), the penetration depth was found to increase with groove wall height. The purpose of this study is to understand the influence of the groove on the penetration depth, mainly through numerical simulation. Spectroscopic measurements were also conducted to validate the simulation. The simulation results showed that when no groove is present, several eddies are formed around the arc column and electrode tip, leading to a recirculating flow pattern. When using a groove, shielding gas introduced from the nozzle flows directly into the arc without forming eddies. In the former case, the metal vapour was transported upwards by the recirculating flow into the arc column and the electrode regions. In contrast, in the latter case, the metal vapour was pushed downward to form a dense metal vapour region over the weld pool and was then swept away horizontally. The arc voltage without a groove is about 1 V lower than that with a groove because the metal vapour around the electrode tip increases the arc electrical conductivity. This affects the arc length control when AVC is used. When the arc voltage increases, the AVC shortens the arc length to keep the voltage constant, leading to the deeper penetration by concentrating the heat input and arc pressure. These mechanisms cause the change of penetration depth when the height of the groove wall is changed.



中文翻译:

沟槽对高锰不锈钢 TIG 焊接中金属蒸气行为和电弧特性的影响

在电弧焊中,通常在焊接的金属件之间使用坡口。在采用弧压控制 (AVC) 的高锰不锈钢钨惰性气体焊接中,发现熔深随着槽壁高度的增加而增加。本研究的目的是了解凹槽对穿透深度的影响,主要是通过数值模拟。还进行了光谱测量以验证模拟。模拟结果表明,当不存在凹槽时,弧柱和电极尖端周围会形成多个涡流,从而导致再循环流型。使用凹槽时,从喷嘴引入的保护气体直接流入电弧中,不会形成涡流。在前一种情况下,金属蒸气通过再循环流向上输送到电弧柱和电极区域。相比之下,在后一种情况下,金属蒸气被向下推以在熔池上方形成密集的金属蒸气区域,然后被水平扫走。没有凹槽的电弧电压比有凹槽的电弧电压低约 1 V,因为电极尖端周围的金属蒸汽增加了电弧的导电性。这会影响使用 AVC 时的弧长控制。当电弧电压增加时,AVC 会缩短电弧长度以保持电压恒定,通过集中热量输入和电弧压力导致更深的熔深。当槽壁高度发生变化时,这些机制会引起穿透深度的变化。金属蒸气被向下推,在熔池上方形成密集的金属蒸气区域,然后被水平扫走。没有凹槽的电弧电压比有凹槽的电弧电压低约 1 V,因为电极尖端周围的金属蒸汽增加了电弧的导电性。这会影响使用 AVC 时的弧长控制。当电弧电压增加时,AVC 会缩短电弧长度以保持电压恒定,通过集中热量输入和电弧压力导致更深的熔深。当槽壁高度发生变化时,这些机制会引起穿透深度的变化。金属蒸气被向下推,在熔池上方形成密集的金属蒸气区域,然后被水平扫走。没有凹槽的电弧电压比有凹槽的电弧电压低约 1 V,因为电极尖端周围的金属蒸汽增加了电弧的导电性。这会影响使用 AVC 时的弧长控制。当电弧电压增加时,AVC 会缩短电弧长度以保持电压恒定,通过集中热量输入和电弧压力导致更深的熔深。当槽壁高度发生变化时,这些机制会引起穿透深度的变化。没有凹槽的电弧电压比有凹槽的电弧电压低约 1 V,因为电极尖端周围的金属蒸汽增加了电弧的导电性。这会影响使用 AVC 时的弧长控制。当电弧电压增加时,AVC 会缩短电弧长度以保持电压恒定,通过集中热量输入和电弧压力导致更深的熔深。当槽壁高度发生变化时,这些机制会引起穿透深度的变化。没有凹槽的电弧电压比有凹槽的电弧电压低约 1 V,因为电极尖端周围的金属蒸汽增加了电弧的导电性。这会影响使用 AVC 时的弧长控制。当电弧电压增加时,AVC 会缩短电弧长度以保持电压恒定,通过集中热量输入和电弧压力导致更深的熔深。当槽壁高度发生变化时,这些机制会引起穿透深度的变化。

更新日期:2021-11-16
down
wechat
bug