当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
FeNiP/MoOx integrated electrode grown on monocrystalline NiMoO4 nanorods with multi-interface for accelerating alkaline hydrogen evolution reaction
Applied Catalysis B: Environment and Energy ( IF 22.1 ) Pub Date : 2021-11-13 , DOI: 10.1016/j.apcatb.2021.120913
Zehao Xiao 1 , Mei Yang 1 , Jie Wang 2 , Zonglin Xu 1 , Shilin Zhang 1 , Aidong Tang 1, 3, 4 , Ruijie Gao 3, 4 , Huaming Yang 2, 3, 4
Affiliation  

Transition metal phosphides are promising candidates for alkaline hydrogen evolution reaction (HER), but the activation of H2O molecule is deficient. We adopt an interface engineering strategy to synthesize a hierarchical FeNiP/MoOx integrated electrode with multi-interface grown on monocrystalline NiMoO4 nanorods. Such catalyst exhibits remarkable alkaline HER performance with a low overpotential of 97 mV at the current density of 100 mA cm−2 and sustainable durability over 20 h. Experimental and theoretical results reveal that interfaces among Fe2P, Ni5P4, and MoOx can efficiently activate H2O molecules and facilitate H desorption. Moreover, employing FeNiP/MoOx/NiMoO4/NF as a cathode, the cell voltage as low as 1.62 V to achieve a current density of 100 mA cm−2, with admirable durability over 20 h for alkaline water splitting (1.0 M NaOH + 0.5 M NaCl). This work offers a new avenue to rationally design a 3D robust, cost-effective catalyst with multi-interface for large-scale practical hydrogen production.



中文翻译:

FeNiP/MoOx 集成电极生长在具有多界面的单晶 NiMoO4 纳米棒上以加速碱性析氢反应

过渡金属磷化物是碱性析氢反应 (HER) 的有希望的候选者,但 H 2 O 分子的活化不足。我们采用界面工程策略来合成具有多界面的分层 FeNiP/MoO x集成电极,该电极在单晶 NiMoO 4纳米棒上生长。这种催化剂表现出显着的碱性 HER 性能,在 100 mA cm -2的电流密度下具有 97 mV 的低过电位和超过 20 小时的可持续耐久性。实验和理论结果表明,Fe 2 P、Ni 5 P 4和 MoO x之间的界面可以有效地激活 H 2O 分子并促进 H 解吸。此外,采用 FeNiP/MoO x /NiMoO 4 /NF 作为阴极,电池电压低至 1.62 V 以实现 100 mA cm -2的电流密度,在碱性水分解(1.0 M NaOH + 0.5 M 氯化钠)。这项工作为合理设计具有多界面的 3D 坚固、经济高效的催化剂提供了一条新途径,用于大规模实际制氢。

更新日期:2021-11-18
down
wechat
bug