当前位置: X-MOL 学术Front. Chem. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbon-doped surface unsaturated sulfur enriched CoS2@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion capacitors
Frontiers of Chemical Science and Engineering ( IF 4.5 ) Pub Date : 2021-09-27 , DOI: 10.1007/s11705-021-2086-2
Yunpeng Shang 1 , Xiaohong Sun 1 , Zhe Chen 1 , Kunzhou Xiong 1 , Yunmei Zhou 1 , Shu Cai 1 , Chunming Zheng 2
Affiliation  

As a hybrid energy storage device of lithium-ion batteries and supercapacitors, lithium-ion capacitors have the potential to meet the demanding needs of energy storage equipment with both high power and energy density. In this work, to solve the obstacle to the application of lithium-ion capacitors, that is, the balancing problem of the electrodes kinetic and capacity, two electrodes are designed and adequately matched. For the anode, we introduced in situ carbon-doped and surface-enriched unsaturated sulfur into the graphene conductive network to prepare transition metal sulfides, which enhances the performance with a faster lithium-ion diffusion and dominant pseudocapacitive energy storage. Therefore, the lithium-ion capacitors anode material delivers a remarkable capacity of 810 mAh·g−1 after 500 cycles at 1 A·g−1. On the other hand, the biomass-derived porous carbon as the cathode also displays a superior capacity of 114.2 mAh·g−1 at 0.1 A·g−1. Benefitting from the appropriate balance of kinetic and capacity between two electrodes, the lithium-ion capacitors exhibits superior electrochemical performance. The assembled lithium-ion capacitors demonstrate a high energy density of 132.9 Wh·kg−1 at the power density of 265 W·kg−1, and 50.0 Wh·kg−1 even at 26.5 kW·kg−1. After 10000 cycles at 1 A·g−1, lithium-ion capacitors still demonstrate the high energy density retention of 81.5%.



中文翻译:

用于高级锂离子电容器的碳掺杂表面不饱和硫富集 CoS2@rGO 气凝胶赝电容阳极和生物质衍生多孔碳阴极

作为锂离子电池和超级电容器的混合储能装置,锂离子电容器具有满足高功率和高能量密度储能设备苛刻需求的潜力。在这项工作中,为了解决锂离子电容器应用的障碍,即电极动力学和容量的平衡问题,设计了两个电极并充分匹配。对于负极,我们将原位碳掺杂和表面富集的不饱和硫引入石墨烯导电网络以制备过渡金属硫化物,这通过更快的锂离子扩散和主要的赝电容储能来提高性能。因此,锂离子电容器负极材料提供了惊人的 810 mAh·g -1 的容量在 1 A·g -1 下经过 500 次循环后。另一方面,生物质衍生的多孔碳作为正极在0.1 A·g -1时也显示出114.2 mAh·g -1的优异容量。得益于两个电极之间的动力学和容量的适当平衡,锂离子电容器表现出优异的电化学性能。组装的锂离子电容器在265 W·kg -1的功率密度下表现出132.9 Wh·kg -1的高能量密度,甚至在26.5 kW·kg -1 时也表现出50.0 Wh·kg -1的高能量密度。在 1 A·g -1 下循环 10000 次后,锂离子电容器仍表现出 81.5% 的高能量密度保持率。

更新日期:2021-11-11
down
wechat
bug