当前位置: X-MOL 学术Proc. Inst. Mech. Eng. E J. Process Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal energy transport in thin film flow of nanofluid over a decelerating rotating disk
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering ( IF 2.4 ) Pub Date : 2021-11-10 , DOI: 10.1177/09544089211050717
Latif Ahmad 1 , Jawad Ahmed 2 , Awais Ahmed 3
Affiliation  

The thin film flow in nanotechnology is one of the most modern progresses in the study of thin films. This includes coating with nanocomposite materials, thus providing the materials improved mechanical properties due to a so-called size effect. The ultimate functional properties that can be gained are of high adherence, wear resistance, thermal conductivity, oxidation resistance, higher toughness and hardness. This article studies the transient motion of nanofluid thin film over a disk rotating with angular velocity inversely proportional to the time. The importance of Lorentz force arises due to the axial projection of magnetic flux is studied on thin film flow and heat transfer. Two active mechanisms of nanoparticles, namely thermophoresis and Brownian diffusion, are discussed using Buongiorno model. By adopting a similarity method, the velocity distribution thermal and concentration fields above the rotating disk are simulated numerically and assessed graphically. Numerical illustrations for nanofluid film thickness, skin friction and heat and mass transfer rates are depicted against the impacts of several influential parameters. Results highlight that film thickness reduces with unsteadiness and rotation parameters. The results also spectacle that the involvement of a magnetic beam reduces the velocity of nanofluid film. Further, it is observed that thermophoresis and Brownian motion effects make a better influence in enhancing the heat transfer rate.



中文翻译:

减速旋转圆盘上纳米流体薄膜流中的热能传输

纳米技术中的薄膜流动是薄膜研究中最现代的进展之一。这包括用纳米复合材料涂层,从而由于所谓的尺寸效应使材料具有改进的机械性能。可以获得的最终功能特性是高附着力、耐磨性、导热性、抗氧化性、更高的韧性和硬度。本文研究了纳米流体薄膜在以与时间成反比的角速度旋转的圆盘上的瞬态运动。洛伦兹力的重要性是由于磁通量的轴向投影引起的薄膜流动和传热研究。使用 Buongiorno 模型讨论了纳米粒子的两种活性机制,即热泳和布朗扩散。采用相似度方法,旋转盘上方的速度分布热场和浓度场以数字方式模拟并以图形方式评估。针对几个有影响的参数的影响,描述了纳米流体膜厚度、皮肤摩擦和传热传质速率的数值说明。结果突出显示,薄膜厚度随不稳定和旋转参数而减小。结果还表明,磁束的参与降低了纳米流体薄膜的速度。此外,观察到热泳和布朗运动效应对提高传热速率有更好的影响。针对几个有影响的参数的影响描述了皮肤摩擦和传热传质率。结果突出显示,薄膜厚度随不稳定和旋转参数而减小。结果还表明,磁束的参与降低了纳米流体薄膜的速度。此外,观察到热泳和布朗运动效应对提高传热速率有更好的影响。针对几个有影响的参数的影响描述了皮肤摩擦和传热传质率。结果突出显示,薄膜厚度随着不稳定和旋转参数而减小。结果还表明,磁束的参与降低了纳米流体薄膜的速度。此外,观察到热泳和布朗运动效应对提高传热速率有更好的影响。

更新日期:2021-11-10
down
wechat
bug