当前位置: X-MOL 学术Earth Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coupling response of the Meso–Cenozoic differential evolution of the North China Craton to lithospheric structural transformation
Earth-Science Reviews ( IF 12.1 ) Pub Date : 2021-11-08 , DOI: 10.1016/j.earscirev.2021.103859
Yiwen Ju 1 , Kun Yu 1, 2 , Guangzeng Wang 3 , Wuyang Li 1, 4 , Kaijun Zhang 1 , Shihu Li 5, 6 , Lingli Guo 3 , Ying Sun 1 , Hongye Feng 1 , Peng Qiao 1 , Raza Ali 1
Affiliation  

The destruction of the North China Craton (NCC) is a particularly significant event in the history of global cratonic evolution and represents a critical stage of cratonic evolution. Since the Paleozoic, the NCC has been located at the intersection of three dynamic systems: the Paleo-Asian, Tethys, and Pacific (including the Paleo-Pacific) tectonic domains. It has endured through the formation and evolution of the cratonic basin, the destruction of the craton, and emergent hydrocarbon accumulation and mineralization. Accordingly, the Meso–Cenozoic differential evolution of the NCC and the effect of lithospheric structural transformation have been hot topics and difficult problems for geologists in recent decades. In this study, the basin–mountain coupling relationship, the effect of strike–slip structures, the Meso–Cenozoic magmatic–thermal interaction, the structural transformation of the lithosphere, the coupling effect of basin–mountain evolution, and the crust–mantle interaction in the NCC are comprehensively discussed. We also provide a geological and geophysical interpretation of the typical profiles in the NCC. The results show that (1) the composition and structure of the NCC are not as stable as those of the major global large cratons. The NCC has undergone a long period of tectonic superposition and reconstruction since the Proterozoic, resulting in assorted differentiation and basin types. These different types of basins and their surrounding orogenic belts have different basin–mountain coupling systems, the evolution of which can be divided into three modes: compression, compression–extension transformation, and extension. (2) The Meso–Cenozoic magmatic–thermal activity in the NCC is a result of material and energy exchanges caused by the vertical effect of the crust–mantle interaction. The Early Cretaceous experienced peak crust–mantle interaction, with the magma source area of the NCC gradually deepening from the Mesozoic crust to the Cenozoic mantle through the geological evolution process. A clear history of magmatic heat was recorded in the eastern and central NCC, confirming that the destruction of the NCC mainly affected the eastern margin of the Ordos Basin. (3) Since the Mesozoic, the activation and transformation of the stable lithosphere in the NCC have been the result of the westward subduction of the Pacific Plate, the collision between the Indian and Eurasian plates, and crust–mantle interaction. The input of material and heat deep in the lithosphere is key to the formation of different types of lithospheres. From east to west, the present three-dimensional lithospheric structure of the NCC is divided into the extensional lithosphere, represented by the Bohai Bay Basin (BBB); the transitional lithosphere, represented by the Yanshan–Taihang orogenic belt; and the cratonic lithosphere, represented by the Ordos Basin. The activation and transformation of the NCC are characterized by the Early Mesozoic compressional mechanism and the Late Mesozoic to Cenozoic extensional mechanism, combined with a strike–slip effect caused by shearing. (4) The basin–mountain relationship of the NCC is a response to deep crust–mantle action. From the Middle to Late Mesozoic, the Taihang Mountains in the eastern NCC formed a passive extensional basin–mountain relationship with the BBB. However, since the Paleogene, the genesis of the basin has changed to active extension. In the Meso–Cenozoic, under the joint influence of the subduction of the Pacific Plate in the eastern NCC and the compression of the Indian Plate in the western NCC, passive extension and strike-slip processes evolved into active extension and strike-slip processes. Accordingly, this study has important theoretical significance for understanding cratonic evolution, basin–mountain transformation, and crust–mantle processes in the Earth system. Moreover, it plays an important role in studying the occurrence and enrichment of fossil energy and mineral resources in cratonic evolution.



中文翻译:

华北克拉通中新生代差异演化对岩石圈构造转变的耦合响应

华北克拉通(NCC)的毁灭是全球克拉通演化史上的一个特别重要的事件,代表了克拉通演化的关键阶段。自古生代以来,华北克拉通位于古亚洲、特提斯和太平洋(包括古太平洋)构造域三个动力系统的交汇处。它经历了克拉通盆地的形成演化、克拉通的破坏、油气的成藏和成矿。因此,华北克拉通中新生代差异演化和岩石圈构造改造的影响是近几十年来地质学家研究的热点和难题。在本研究中,盆山耦合关系、走滑构造的影响、综合讨论了华北克拉通中新生代岩浆热相互作用、岩石圈结构转变、盆山演化耦合效应、壳幔相互作用等。我们还提供了 NCC 中典型剖面的地质和地球物理解释。结果表明:(1)华北克拉通的组成结构不如全球主要大克拉通稳定。华北克拉通自元古界以来经历了长期的构造叠加和重建,形成了多种分异和盆地类型。这些不同类型的盆地及其周围的造山带具有不同的盆山耦合系统,其演化可分为挤压、压伸转换和伸展三种模式。(2) 华北克拉通中-新生代岩浆-热活动是壳幔相互作用垂直效应引起物质和能量交换的结果。早白垩世经历了壳幔相互作用高峰,华北克拉通岩浆源区通过地质演化过程,从中生代地壳向新生代地幔逐渐加深。华北克拉通东部和中部有明显的岩浆热史,证实华北克拉通的破坏主要影响鄂尔多斯盆地东缘。(3) 中生代以来, 太平洋板块向西俯冲、印度板块与欧亚板块碰撞、壳幔相互作用, 导致华北克拉通稳定岩石圈的活化和转化。岩石圈深处物质和热量的输入是形成不同类型岩石圈的关键。目前华北克拉通岩石圈三维结构自东向西分为以渤海湾盆地(BBB)为代表的伸展岩石圈;以燕山-太行造山带为代表的过渡岩石圈;以鄂尔多斯盆地为代表的克拉通岩石圈。华北克拉通的活化和转化具有早中生代挤压机制和晚中新生代伸展机制,并结合剪切作用引起的走滑效应。(4) 华北克拉通的盆山关系是对深部壳幔作用的响应。从中生代到晚期,华北盆地东部太行山与 BBB 形成被动张张盆山关系。但自古近纪以来,盆地的成因转变为活动伸展。中新生代,在华北克拉通东部太平洋板块俯冲和华北克拉通西部印度板块挤压作用的共同作用下,被动伸展走滑过程演化为主动伸展走滑过程。因此,本研究对于理解地球系统克拉通演化、盆山转换和壳幔过程具有重要的理论意义。此外,它在研究克拉通演化过程中化石能源和矿产资源的赋存和富集方面具有重要作用。盆地成因转变为主动伸展。中新生代,在华北克拉通东部太平洋板块俯冲和华北克拉通西部印度板块挤压作用的共同作用下,被动伸展走滑过程演化为主动伸展走滑过程。因此,本研究对于理解地球系统克拉通演化、盆山转换和壳幔过程具有重要的理论意义。此外,它在研究克拉通演化过程中化石能源和矿产资源的赋存和富集方面具有重要作用。盆地成因转变为主动伸展。中新生代,在华北克拉通东部太平洋板块俯冲和华北克拉通西部印度板块挤压作用的共同作用下,被动伸展走滑过程演化为主动伸展走滑过程。因此,本研究对于理解地球系统克拉通演化、盆山转换和壳幔过程具有重要的理论意义。此外,它在研究克拉通演化过程中化石能源和矿产资源的赋存和富集方面具有重要作用。被动伸展和走滑过程演化为主动伸展和走滑过程。因此,本研究对于理解地球系统克拉通演化、盆山转换和壳幔过程具有重要的理论意义。此外,它在研究克拉通演化过程中化石能源和矿产资源的赋存和富集方面具有重要作用。被动伸展和走滑过程演化为主动伸展和走滑过程。因此,本研究对于理解地球系统克拉通演化、盆山转换和壳幔过程具有重要的理论意义。此外,它在研究克拉通演化过程中化石能源和矿产资源的赋存和富集方面具有重要作用。

更新日期:2021-11-20
down
wechat
bug