当前位置: X-MOL 学术Comput. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Topology optimization for stability problems of submerged structures using the TOBS method
Computers & Structures ( IF 4.7 ) Pub Date : 2021-11-02 , DOI: 10.1016/j.compstruc.2021.106685
E. Mendes 1 , R. Sivapuram 2 , R. Rodriguez 3 , M. Sampaio 4 , R. Picelli 1, 4
Affiliation  

Structural optimization is increasingly used across academia and industry because of the great design freedom it offers and due to the increasing availability of computational power. In this context, binary methods - which generate clear (0/1) designs - are an effective approach to solve optimization problems, especially multiphysics, wherein precise definition of the structural boundary is essential. This work adopts the Topology Optimization of Binary Structures (TOBS) method to solve structural optimization problems that consider buckling constraints and design-dependent loads, such as fluid pressure loading, a characteristic of submerged structures. Buckling constrained TO problems applied to design-dependent loads are not yet explored in the literature. Few optimization problems are investigated to demonstrate the effect of the buckling constraint on the optimized solutions as compared to that of the classical compliance minimization problem. The common issues associated with the eigenproblem characteristic of the buckling phenomenon are discussed. The method successfully considers design-dependent loads coupled with stability constraints, obtaining final solutions with significant improvement in buckling resistance and minimal stiffness loss when compared to the compliance design. It is concluded that the TOBS method presented promising results and potential application in stability problems of design-dependent loaded structures, such as those present in the offshore industry.



中文翻译:

基于TOBS方法的水下结构稳定性问题拓扑优化

结构优化在学术界和工业界越来越多地使用,因为它提供了极大的设计自由度以及计算能力的可用性不断提高。在这种情况下,生成清晰 (0/1) 设计的二元方法是解决优化问题的有效方法,尤其是多物理场,其中结构边界的精确定义至关重要。这项工作采用二元结构拓扑优化 (TOBS) 方法来解决考虑屈曲约束和设计相关载荷(例如流体压力载荷)的结构优化问题,这是水下结构的一种特征。文献中尚未探讨应用于设计相关载荷的屈曲约束 TO 问题。与经典的柔度最小化问题相比,我们研究了很少的优化问题来证明屈曲约束对优化解决方案的影响。讨论了与屈曲现象的特征问题特征相关的常见问题。该方法成功地考虑了与设计相关的载荷以及稳定性约束,与柔顺设计相比,获得了抗屈曲性能显着提高和刚度损失最小的最终解决方案。得出的结论是,TOBS 方法在依赖于设计的负载结构的稳定性问题中呈现出有希望的结果和潜在的应用,例如海上工业中存在的那些。讨论了与屈曲现象的特征问题特征相关的常见问题。该方法成功地考虑了与设计相关的载荷以及稳定性约束,与柔顺设计相比,获得了抗屈曲性能显着提高和刚度损失最小的最终解决方案。得出的结论是,TOBS 方法在依赖于设计的负载结构的稳定性问题中呈现出有希望的结果和潜在的应用,例如海上工业中存在的那些。讨论了与屈曲现象的特征问题特征相关的常见问题。该方法成功地考虑了与设计相关的载荷以及稳定性约束,与柔顺设计相比,获得了抗屈曲性能显着提高和刚度损失最小的最终解决方案。得出的结论是,TOBS 方法在依赖于设计的负载结构的稳定性问题中呈现出有希望的结果和潜在的应用,例如海上工业中存在的那些。与柔顺设计相比,获得在抗屈曲性和刚度损失方面有显着改善的最终解决方案。得出的结论是,TOBS 方法在依赖于设计的负载结构的稳定性问题中呈现出有希望的结果和潜在的应用,例如海上工业中存在的那些。与柔顺设计相比,获得在抗屈曲性和刚度损失方面有显着改善的最终解决方案。得出的结论是,TOBS 方法在依赖于设计的负载结构的稳定性问题中呈现出有希望的结果和潜在的应用,例如海上工业中存在的那些。

更新日期:2021-11-03
down
wechat
bug