当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part D J. Automob. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adaptive torsional vibration active control for hybrid electric powertrains during start-up based on model prediction
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ( IF 1.7 ) Pub Date : 2021-11-02 , DOI: 10.1177/09544070211056176
Xing Chen 1, 2 , Dan Peng 1 , Jibin Hu 3 , Cheng Li 1 , Shuili Zheng 1 , Wenhai Zhang 1
Affiliation  

Torsional vibration occurs when the hybrid vehicle transmission system is influenced by the multiple excitations and the dynamic loads caused by mode switching. Torsional vibrations of transmission system directly affect the stability, reliability, and safety of vehicles. In order to suppress the torsional vibration, this paper studied the active vibration control algorithm for the hybrid powertrains under rapid acceleration. Primarily, the architecture and the dynamic modeling of the drive system of the hybrid vehicle was built. Moreover, the hybrid control system including engine controller, motor controller and transmission controller was proposed. Furthermore, an adaptive active control controller was constructed to solve the torsional vibration problem. And model prediction control (MPC) and Butterworth filter control were combined into the controller. Finally, the efficacy of this active method for vibration reduction under start-up conditions was simulated. The simulation results showed that the torsional vibration of the transmission system was reduced by 96%–99% with external interference and the system stabilization time was advanced by 93% without external interference. The adaptive control algorithm suggested in this paper effectively suppressed the torsional vibration of hybrid electric vehicles (HEV) when accelerating in pure electric mode, without affecting vehicles’ dynamic performance.



中文翻译:

基于模型预测的混合动力系统启动时自适应扭振主动控制

当混合动力汽车传动系统受到多种激励和模式切换引起的动态载荷的影响时,就会发生扭转振动。传动系统的扭振直接影响车辆的稳定性、可靠性和安全性。为了抑制扭转振动,本文研究了混合动力系统在快速加速下的振动主动控制算法。首先,建立了混合动力汽车驱动系统的架构和动力学建模。此外,提出了包括发动机控制器、电机控制器和变速器控制器的混合控制系统。此外,构建了自适应主动控制控制器来解决扭振问题。并将模型预测控制(MPC)和巴特沃斯滤波器控制结合到控制器中。最后,模拟了这种主动方法在启动条件下的减振效果。仿真结果表明,在有外部干扰的情况下,传动系统的扭振降低了96%~99%,在没有外部干扰的情况下,系统稳定时间提前了93%。本文提出的自适应控制算法有效抑制了混合动力汽车(HEV)在纯电动模式下加速时的扭振,同时不影响车辆的动态性能。仿真结果表明,在有外界干扰的情况下,传动系统的扭振降低了96%~99%,在没有外界干扰的情况下,系统稳定时间提前了93%。本文提出的自适应控制算法有效抑制了混合动力汽车(HEV)在纯电动模式下加速时的扭振,同时不影响车辆的动态性能。仿真结果表明,在有外界干扰的情况下,传动系统的扭振降低了96%~99%,在没有外界干扰的情况下,系统稳定时间提前了93%。本文提出的自适应控制算法有效抑制了混合动力汽车(HEV)在纯电动模式下加速时的扭振,同时不影响车辆的动态性能。

更新日期:2021-11-02
down
wechat
bug