当前位置: X-MOL 学术Biomass Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A comprehensive model integrating BP neural network and RSM for the prediction and optimization of syngas quality
Biomass & Bioenergy ( IF 6 ) Pub Date : 2021-10-29 , DOI: 10.1016/j.biombioe.2021.106278
Jishuo Li 1 , Xiwen Yao 1 , Kaili Xu 1
Affiliation  

A comprehensive model for the prediction and optimization of high-quality syngas is developed from feedstock selection to operating conditions selection. This is a study to explore the integration of a back propagation (BP) neural network and response surface methodology (RSM) in biomass gasification. In this paper, the input variables, namely, exergy efficiency of hydrogen and cold gas efficiency (CGE) of combustible syngas, were used as the evaluation indexes of syngas quality. The datasets for the study of the prediction and optimization were generated by running a validated Aspen Plus process model. First, 110 biomasses with different compositions were simulated in the process model under specific conditions. Then, the correlation between the input and output variables was analysed and verified through partial correlation analysis and linear fitting. For the prediction of syngas quality, taking the content of C, H, and O as input variables, 110 sets of data were applied in the BP neural network. Regarding the optimization of syngas quality, an RSM was introduced with the gasification temperature, steam-to-biomass (S/B) ratio, and equivalence ratio (ER) as input variables. The results of the BP neural network showed that it can realize the prediction function of syngas quality with good accuracy (R > 0.98 and R > 0.99, respectively). The results of the RSM indicated that the optimum conditions for high-quality syngas were T = 822 °C, S/B = 0.2, ER = 0.01 and T = 885 °C, S/B = 0.2, ER = 0.01.



中文翻译:

一种结合BP神经网络和RSM的综合模型,用于合成气质量预测和优化

从原料选择到操作条件选择,开发了用于预测和优化高质量合成气的综合模型。这是一项研究,旨在探索反向传播 (BP) 神经网络和响应面方法 (RSM) 在生物质气化中的整合。本文以氢气的火用效率和可燃合成气的冷气效率(CGE)为输入变量作为合成气质量的评价指标。用于预测和优化研究的数据集是通过运行经过验证的 Aspen Plus 过程模型生成的。首先,在特定条件下的过程模型中模拟了 110 种不同成分的生物质。然后,通过偏相关分析和线性拟合分析和验证输入和输出变量之间的相关性。对于合成气质量的预测,以C、H和O的含量为输入变量,在BP神经网络中应用了110组数据。关于合成气质量的优化,引入了以气化温度、蒸汽与生物质 (S/B) 比和当量比 (ER) 作为输入变量的 RSM。BP神经网络的结果表明,它可以很好地实现合成气质量的预测功能(分别为R>0.98和R>0.99)。RSM 的结果表明,高质量合成气的最佳条件为 T = 822 °C,S/B = 0.2,ER = 0.01 和 T = 885 °C,S/B = 0.2,ER = 0.01。以C、H、O的内容为输入变量,110组数据应用于BP神经网络。关于合成气质量的优化,引入了以气化温度、蒸汽与生物质 (S/B) 比和当量比 (ER) 作为输入变量的 RSM。BP神经网络的结果表明,它可以很好地实现合成气质量的预测功能(分别为R>0.98和R>0.99)。RSM 的结果表明,高质量合成气的最佳条件为 T = 822 °C,S/B = 0.2,ER = 0.01 和 T = 885 °C,S/B = 0.2,ER = 0.01。以C、H、O的内容为输入变量,110组数据应用于BP神经网络。关于合成气质量的优化,引入了以气化温度、蒸汽与生物质 (S/B) 比和当量比 (ER) 作为输入变量的 RSM。BP神经网络的结果表明,它可以很好地实现合成气质量的预测功能(分别为R>0.98和R>0.99)。RSM 的结果表明,高质量合成气的最佳条件为 T = 822 °C,S/B = 0.2,ER = 0.01 和 T = 885 °C,S/B = 0.2,ER = 0.01。和当量比 (ER) 作为输入变量。BP神经网络的结果表明,它可以很好地实现合成气质量的预测功能(分别为R>0.98和R>0.99)。RSM 的结果表明,高质量合成气的最佳条件为 T = 822 °C,S/B = 0.2,ER = 0.01 和 T = 885 °C,S/B = 0.2,ER = 0.01。和当量比 (ER) 作为输入变量。BP神经网络的结果表明,它可以很好地实现合成气质量的预测功能(分别为R>0.98和R>0.99)。RSM 的结果表明,高质量合成气的最佳条件为 T = 822 °C,S/B = 0.2,ER = 0.01 和 T = 885 °C,S/B = 0.2,ER = 0.01。

更新日期:2021-10-30
down
wechat
bug