当前位置: X-MOL 学术Earth Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prediction of shoreline–shelf depositional process regime guided by palaeotidal modelling
Earth-Science Reviews ( IF 12.1 ) Pub Date : 2021-10-29 , DOI: 10.1016/j.earscirev.2021.103827
Daniel S. Collins 1, 2 , Alexandros Avdis 2 , Martin R. Wells 3 , Christopher D. Dean 4 , Andrew J. Mitchell 2 , Peter A. Allison 2 , Howard D. Johnson 2 , Gary J. Hampson 2 , Jon Hill 5 , Matthew D. Piggott 2
Affiliation  

Ancient shoreline–shelf depositional systems are influenced by an unusually wide array of geological, biological and hydrodynamic processes, with sediment transport and deposition primarily determined by the interaction of river, wave (including storm) and tidal processes, and changes in relative sea level. Understanding the impact of these processes on shoreline–shelf morphodynamics and stratigraphic preservation remains challenging. Numerical modelling integrated with traditional facies analysis provides an increasingly viable approach, with the potential to quantify, and thereby improve understanding of, the impact of these complex coastal sedimentary processes. An integrated approach is presented here that focuses on palaeotidal modelling to investigate the controls on ancient tides and their influence on sedimentary deposition and preservation – one of the three cornerstones of the ternary process classification scheme of shoreline-shelf systems. Numerical tidal modelling methodology is reviewed and illustrated in three palaeotidal model case studies of different scales and focus. The results are synthesised in the context of shoreline–shelf processes, including a critique and modification of the process-based classification scheme.

The emphasis on tidal processes reflects their global importance throughout Earth’s history. Ancient palaeotidal models are able to highlight and quantify the following four controls on tidal processes: (1) the physiography (shape and depth) of oceans (1000s km scale) determines the degree of tidal resonance; (2) the physiography of ocean connections to partly enclosed water bodies (100–1000s km scale) determines the regional-scale flux of tidal energy (inflow versus outflow); (3) the physiography of continental shelves influences shelf tidal resonance potential; and (4) tides in relatively local-scale embayments (typically 1–10s km scale) are influenced by the balance of tidal amplification due to funnelling, shoaling and resonance effects versus frictional damping. In deep time, palaeogeographic and palaeobathymetric uncertainty can be accounted for in palaeotidal models by performing sensitivity analyses to different scenarios, across this range of spatial scales.

These tidal process controls are incorporated into an updated predictive decision tree for determining shoreline–shelf process regime in terms of the relative interaction of wave, fluvial and tidal processes. The predictive decision tree considers the effects of basin physiography, shelf width and shoreline morphology on wave, fluvial and tidal processes separately. Uncertainty and ambiguity in applying the widely used three-tier process classification scheme are reduced by using the decision tree in conjunction with a proposed two-tier classification of process regime that is limited to primary and secondary processes. This two-tier classification scheme is illustrated in the three case studies, showing how integration of numerical modelling with facies analysis of the preserved stratigraphic record improves confidence in prediction of tide-influenced shoreline-shelf process regimes. Wider application of this approach will further improve process-based classifications and predictions of modern and ancient shoreline–shelf systems.



中文翻译:

以古潮汐模型为指导的海岸线-陆架沉积过程状态预测

古代海岸线-陆架沉积系统受到异常广泛的地质、生物和水动力过程的影响,沉积物运输和沉积主要由河流、波浪(包括风暴)和潮汐过程以及相对海平面变化的相互作用决定。了解这些过程对海岸线-陆架形态动力学和地层保存的影响仍然具有挑战性。与传统相分析相结合的数值模拟提供了一种越来越可行的方法,有可能量化这些复杂的沿海沉积过程的影响,从而提高对这些影响的理解。这里提出了一种综合方法,重点是古潮汐建模,以研究对古潮汐的控制及其对沉积物沉积和保存的影响——这是海岸线 - 陆架系统三元过程分类方案的三个基石之一。在三个不同尺度和焦点的古潮汐模型案例研究中回顾和说明了数值潮汐建模方法。结果是在海岸线 - 货架过程的背景下综合的,包括对基于过程的分类方案的批评和修改。

对潮汐过程的强调反映了它们在整个地球历史上的全球重要性。古代古潮汐模型能够突出和量化以下四个对潮汐过程的控制:(1)海洋(1000 公里尺度)的地貌(形状和深度)决定了潮汐共振的程度;(2) 海洋与部分封闭水体(100-1000s km 尺度)的连接地貌决定了区域尺度的潮汐能通量(流入与流出);(3) 大陆架的地貌影响大陆架潮汐共振势;(4) 相对局部尺度的海湾(通常为 1-10 s km 尺度)中的潮汐受由于漏斗、浅滩和共振效应与摩擦阻尼引起的潮汐放大平衡的影响。在很深的时间里,

这些潮汐过程控制被纳入更新的预测决策树中,用于根据波浪、河流和潮汐过程的相对相互作用来确定海岸线 - 大陆架过程状态。预测决策树分别考虑了盆地地貌、陆架宽度和海岸线形态对波浪、河流和潮汐过程的影响。通过将决策树与所提议的仅限于初级和次级过程的两层过程机制分类结合使用,可以减少应用广泛使用的三层过程分类方案时的不确定性和模糊性。三个案例研究说明了这种两层分类方案,展示了数值建模与保存地层记录的相分析的整合如何提高对受潮汐影响的海岸线-陆架过程状态预测的信心。这种方法的更广泛应用将进一步改进现代和古代海岸线-陆架系统的基于过程的分类和预测。

更新日期:2021-11-20
down
wechat
bug