当前位置: X-MOL 学术Exp. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and Numerical Study of a Geodesic Dome Under Static and Dynamic Loads and the Influence of Nodal Connections
Experimental Techniques ( IF 1.6 ) Pub Date : 2021-10-28 , DOI: 10.1007/s40799-021-00509-6
D. Rossot 1 , N. Barbieri 1 , K. F. de Lima 1 , R. D. Machado 2
Affiliation  

Geodesic domes are 3D reticulated structures used to cover large areas. As lightweight structures, they are sensible for dynamic effects. The structural behaviour of domes is affected by the kind of connections between their members. Semi -rigid joints produce loss of stiffness compared with rigid joints. Dynamic tests may capture the effect of semi-rigid joints. The objective of this work is to conduct both static and dynamic tests on a Geodesic Dome at the laboratory scale and compare the results with a linear elastic FE model. The research method involved designing, building and testing a prototype constructed of aluminum wit h overall dimensions of 2000 mm in diameter and 800 mm in height. A 3D finite element model was developed using beam and shell elements. Experimental and numerical results were compared in terms of displacements and frequencies. Load—displacement curves are presented for the static loading. The dynamic behaviour is evaluated by hitting an impact hammer on members and nodes to allow measurement of accelerations. An FFT technique is used to determine the frequency spectrum. The results show that the laboratory prototype presented about 20% less stiffness than predicted by the linear elastic numerical model. The difference is attributed to the transmissibility condition between nodal connectors and emphasizes the influence of semi-rigid joints. Despite being largely used to assess dome structures, standard FE models are shown to be insufficient in capturing local non-linearities.



中文翻译:

静态和动态载荷下测地圆顶的实验和数值研究以及节点连接的影响

测地圆顶是用于覆盖大面积的 3D 网状结构。作为轻型结构,它们对动态效果很敏感。圆顶的结构行为受其成员之间的连接类型的影响。与刚性接头相比,半刚性接头会产生刚度损失。动态测试可能会捕捉到半刚性接头的影响。这项工作的目的是在实验室规模的测地圆顶上进行静态和动态测试,并将结果与​​线弹性有限元模型进行比较。研究方法包括设计、建造和测试一个由铝制成的原型,其整体尺寸为直径 2000 毫米,高度 800 毫米。使用梁和壳单元开发了 3D 有限元模型。在位移和频率方面比较了实验和数值结果。载荷——显示静载荷的位移曲线。通过在构件和节点上击打冲击锤来评估动态行为,以测量加速度。FFT 技术用于确定频谱。结果表明,实验室原型的刚度比线弹性数值模型预测的低 20%。这种差异归因于节点连接器之间的传递条件,并强调了半刚性节点的影响。尽管主要用于评估圆顶结构,但标准 FE 模型在捕捉局部非线性方面表现出不足。通过在构件和节点上击打冲击锤来评估动态行为,以测量加速度。FFT 技术用于确定频谱。结果表明,实验室原型的刚度比线弹性数值模型预测的低 20%。这种差异归因于节点连接器之间的传递条件,并强调了半刚性节点的影响。尽管主要用于评估圆顶结构,但标准 FE 模型在捕捉局部非线性方面表现出不足。通过在构件和节点上击打冲击锤来评估动态行为,以测量加速度。FFT 技术用于确定频谱。结果表明,实验室原型的刚度比线弹性数值模型预测的低 20%。这种差异归因于节点连接器之间的传递条件,并强调了半刚性节点的影响。尽管主要用于评估圆顶结构,但标准 FE 模型在捕捉局部非线性方面表现出不足。结果表明,实验室原型的刚度比线弹性数值模型预测的低 20%。这种差异归因于节点连接器之间的传递条件,并强调了半刚性节点的影响。尽管主要用于评估圆顶结构,但标准 FE 模型在捕捉局部非线性方面表现出不足。结果表明,实验室原型的刚度比线弹性数值模型预测的低 20%。这种差异归因于节点连接器之间的传递条件,并强调了半刚性节点的影响。尽管主要用于评估圆顶结构,但标准 FE 模型在捕捉局部非线性方面表现出不足。

更新日期:2021-10-28
down
wechat
bug