当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene Confers Ultralow Friction on Nanogear Cogs
Small ( IF 13.3 ) Pub Date : 2021-10-22 , DOI: 10.1002/smll.202104487
Andrea Mescola 1 , Guido Paolicelli 1 , Sean P Ogilvie 2 , Roberto Guarino 3 , James G McHugh 4 , Alberto Rota 1, 5 , Erica Iacob 6 , Enrico Gnecco 7 , Sergio Valeri 1, 5 , Nicola M Pugno 8, 9 , Venkataramana Gadhamshetty 10 , Muhammad M Rahman 11 , Pulickel Ajayan 11 , Alan B Dalton 2 , Manoj Tripathi 2
Affiliation  

Friction-induced energy dissipation impedes the performance of nanomechanical devices. Nevertheless, the application of graphene is known to modulate frictional dissipation by inducing local strain. This work reports on the nanomechanics of graphene conformed on different textured silicon surfaces that mimic the cogs of a nanoscale gear. The variation in the pitch lengths regulates the strain induced in capped graphene revealed by scanning probe techniques, Raman spectroscopy, and molecular dynamics simulation. The atomistic visualization elucidates asymmetric straining of CC bonds over the corrugated architecture resulting in distinct friction dissipation with respect to the groove axis. Experimental results are reported for strain-dependent solid lubrication which can be regulated by the corrugation and leads to ultralow frictional forces. The results are applicable for graphene covered corrugated structures with movable components such as nanoelectromechanical systems, nanoscale gears, and robotics.

中文翻译:

石墨烯赋予纳米齿轮超低摩擦力

摩擦引起的能量耗散阻碍了纳米机械装置的性能。然而,已知石墨烯的应用通过引起局部应变来调节摩擦耗散。这项工作报告了石墨烯在不同纹理硅表面上的纳米力学,模拟纳米齿轮的齿轮。通过扫描探针技术、拉曼光谱和分子动力学模拟,节距长度的变化调节了在封端石墨烯中诱导的应变。原子可视化阐明了 C  的不对称应变C 键结合在波纹结构上,导致相对于凹槽轴的明显摩擦耗散。报告了应变相关固体润滑的实验结果,该润滑可以通过波纹进行调节并导致超低摩擦力。结果适用于石墨烯覆盖的具有可移动组件的波纹结构,例如纳米机电系统、纳米齿轮和机器人。
更新日期:2021-11-25
down
wechat
bug