当前位置: X-MOL 学术Nat. Astron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultra-low-frequency gravitational waves from cosmological and astrophysical processes
Nature Astronomy ( IF 14.1 ) Pub Date : 2021-10-18 , DOI: 10.1038/s41550-021-01489-8
Christopher J. Moore 1 , Alberto Vecchio 1
Affiliation  

Gravitational waves at ultra-low frequencies (100 nHz) are key to understanding the assembly and evolution of astrophysical black hole binaries with masses ~106–109M at low redshifts1,2,3. These gravitational waves also offer a unique window into a wide variety of cosmological processes4,5,6,7,8,9,10,11. Pulsar timing arrays12,13,14 are beginning to measure15 this stochastic signal at ~1–100 nHz and the combination of data from several arrays16,17,18,19 is expected to confirm a detection in the next few years20. The dominant physical processes generating gravitational radiation at nHz frequencies are still uncertain. Pulsar timing array observations alone are currently unable21 to distinguish a binary black hole astrophysical foreground22 from a cosmological background due to, say, a first-order phase transition at a temperature ~1–100 MeV in a weakly interacting dark sector8,9,10,11. This letter explores the extent to which incorporating integrated bounds on the ultra-low-frequency gravitational wave spectrum from any combination of cosmic microwave background23,24, big bang nucleosynethesis25,26 or astrometric27,28 observations can help to break this degeneracy.



中文翻译:

来自宇宙学和天体物理过程的超低频引力波

引力波在超低频率( 100 NHZ)是了解该组件,并用质量〜10的天体物理学黑洞二进制进化6 -10 9中号在低红移1,2,3。这些引力波还为了解各种宇宙学过程提供了一个独特的窗口4,5,6,7,8,9,10,11。脉冲星定时阵列12、13、14开始测量15这种随机信号,频率约为 1-100 nHz,来自多个阵列16、17、18、19的数据的组合预计将在未来几年内确认检测20. 在 nHz 频率下产生引力辐射的主要物理过程仍然不确定。脉冲星定时阵列观测目前无法21将双黑洞天体物理前景22与宇宙学背景区分开来,因为,例如,在一个弱相互作用的暗区中,温度约为 1-100 MeV 的一阶相变8,9 ,10,11这封信探讨了结合宇宙微波背景23,24、大爆炸核合成25,26或天体测量27,28观测的任意组合的超低频引力波谱的综合界限在多大程度上有助于打破这种退化。

更新日期:2021-10-18
down
wechat
bug