当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoscale Agrochemicals for Crop Health: A Key Line of Attack in the Battle for Global Food Security
Environmental Science & Technology ( IF 11.4 ) Pub Date : 2021-10-19 , DOI: 10.1021/acs.est.1c06042
Jason C White 1 , Jorge Gardea-Torresdey 2
Affiliation  

This article is part of the Environmental Implications of Nanofertilizers special issue. Safely and sustainably feeding the global population during the next three decades will be among the most significant challenges we face as a species. We have known this for some time. In June of 2009, the Food and Agriculture Organization (FAO) convened a 3-day “Meeting of Experts” in Rome and a “High Level Experts Forum” at FAO headquarters in October of the same year. The question discussed was straightforward; “How to Feed the World in 2050.” (1) The consensus was that solutions existed, and enough food could be produced by 2050, given the right conditions. Twelve years later, one could accurately argue that those solutions have been elusive. During this period, a number of conditions on the ground have changed or become more impactful than predicted. This includes a more rapidly changing climate and shortcomings in the global health and supply chain as evidenced during the COVID-19 pandemic. Although the question of global food security is straightforward, the issue and the solutions are highly complex and multifaceted. A key tenet of achieving food security is the future sustainability of agricultural practices. Although the Green Revolution and the use of agrochemicals and irrigation led to dramatic increases in crop production, energy and water inputs to maintain such systems remain high. (2) Similarly, the efficiency of delivery and utilization rates of fertilizers and pesticides are consistently low (<30%), sometimes abysmally so (<1%). (2,3) Because of low delivery and uptake efficiency, growers often over apply to ensure crop needs are met. Such practices have had profound negative consequences on the environment, ranging from eutrophication and toxic algal blooms to pesticide accumulation and toxicity to nontarget species. In addition, it is also a certainty that a currently changing climate will make agricultural production more difficult, with the uncertainty being only how fast and how bad. We know that a changing climate will result in significant range expansion of biotic stressors such as agricultural pests and pathogens. For example, Deutsch et al. (4) modeled that global losses of rice, maize and wheat to insect pests would increase by 10–25% per degree of increase in surface temperature. Similar increases could be experienced with viral, bacterial, fungal and protozoan pathogens. A similar increased challenge will be faced from abiotic factors, including more intense extremes of temperature, drought, and salinity. In short, we will be forced to grow food on more marginal lands and under more difficult conditions. Additionally, there are unforeseen factors at play. The COVID-19 pandemic has shone a bright spotlight on a number of important societal issues, one of which is most certainly the fragile nature of global, regional, and local food-supply chains. It is also imperative to point out that like a number of other issues in our society, food insecurity is and will be rife with inequity. Food insecurity does not and will not look the same for every one of our global citizens. For an unacceptably large and growing number of people, this will literally mean not knowing where the next meal will come from. For others, it may be undernutrition or hidden hunger; for some, it could be an $8 loaf of bread at the local big box store. What is certain is that all humans will be impacted by food insecurity in some way. So, we get it. The problem is “huge”, and the situation is dire. What do we do? Well, to be blunt, we get to work, and we do our jobs. In the FAO High Level Experts Forum 12 years ago, this was deemed a solvable problem, and we think this is still the case. So, let us solve it. And that is what this special issue of Environmental Science and Technology represents; the issue focuses on the “Environmental Implications of Nanofertilizers.” As many of us know, materials behave differently at the nanoscale; those physical and chemical differences have biological implications. Nanotechnology seeks to take advantage of those unique nanoscale properties, and here, seeks to develop strategies and platforms to sustainably increase food production while simultaneously not only minimizing energy and water inputs but also reducing the negative environmental footprint of agriculture. (2) The concept of using nanotechnology in agriculture is not new; papers were published as early as 2000 that discussed the potential benefits of these approaches to food production. (5,6) Notably, in those “early” years, review articles and perspective pieces far outnumbered research articles. The reasons for this are complex and involve difficulties with developing a good idea into testable research questions, as well as the development of the field of nanotoxicology, which rightfully shifted focus toward toxicological concerns in the environment. Importantly, for many nanoscale materials, the difference between toxicity and benefit is a subtle as a narrow change in dose or of nanoparticle (NP) type or speciation. In 2018, Kah et al. (7) conducted an analysis of 78 published papers on nanoenabled pesticides and fertilizers, noting a 20–30% increase in efficacy over conventional approaches. Importantly, the authors spoke of the immaturity of the field, with many studies lacking quality assurance and controls and a general lack of field data. Our companion piece to that work did highlight what we saw as “the seed of great potential” but noted that a general lack of mechanistic understanding of nearly all approaches was pervasive, both at the level of the chemistry of the materials and of the response of the plant. (8) The two papers did highlight the broader range of nanotechnology applications in agriculture, which includes more effective and responsive delivery of agrochemicals, nanoscale sensors for conveying important information (pests, disease, water/nutrient status), increasing tolerance to biotic (pests, pathogens) and abiotic (drought, temperature, salinity) stress, increasing photosynthesis, nanoenabled biofortification of seeds and crops, and novel nanoscale food preservation and food packaging platforms. Kah et al. (9) reported in mid-2019 that research and actual products in the field were largely focused on nanoenabled delivery systems and that a 20% increase in efficacy was common. Importantly, field scale studies on the application of nanotechnology had been published, and the authors highlighted that between the years 1993–2016, 3279 patents had been filed on nanotechnology in agriculture and 1254 had been granted. Importantly, the majority of those were granted in the 2014–2016 period. The authors argued that the path to success required convergence; successful applications of nanotechnology in agriculture would only come from the combined expertise of material scientists, agronomists, chemists, plant physiologists, toxicologists, ecologists, and social scientists, among others. The following year, Hoffman et al. (10) not only explored the potential applications and benefits of nanotechnology in agriculture but also evaluated the technological readiness and performance of different approaches, identifying the key barriers to be overcome for deployment, including scale up to delivery in the field, regulatory and safety concerns, and consumer acceptance. Importantly, the group offered strategies to overcome those barriers, such as informed material selection and synthesis, application scenarios to minimize human and ecosystem exposure, the establishment of sentinel research sites, the use of advanced analytical tools for detection of exposure and effect, and significant stakeholder engagement throughout the entire process from development to deployment. The paper also discussed novel applications, such as genome engineering with CRISPR-cas9 and nanoscale delivery of genetic material for activation of RNA interference (RNAi) pathways for controlling of pest/pathogen of plants. More recently, a google scholar search in July of 2021, three years after Kah’s 2018 analysis of 78 papers, finds 456 papers published with both of the terms “nanotechnology” and “agriculture” in the title. Perhaps more importantly, the same search terms that recovered 3279 patents filed and 1254 granted in 2019 now returned 9791 filed and 2301 granted in July 2021. These values represent rather remarkable increases in two years, and we believe this a clear signal of the rapidly growing interest in and tremendous potential of nanotechnology in agriculture. However, as noted by Gilbertson et al., (11) the potential widespread use of nanoscale materials in food production systems requires both caution and a systems-level understanding of the fate and effects of these materials throughout their life cycle. It is clear that not only a thorough understanding of mechanisms of action but also of dynamic transformation processes such as corona formation and dissolution/aggregation will be critical for safe and sustainable deployment of nanotechnology in agriculture and the environment. (12) For example, synchrotron-based techniques, including X-ray absorption near edge structure (XANES) and micro-X-ray fluorescence (μ-XRF), have been used to study the mechanisms of nanomaterial transformation in some major crops. The use of XANES demonstrated that nanoscale CeO2 was accumulated and stored, with little or no transformation, in roots of soybean (Glycine max), whereas nanoscale ZnO was not detected. (13) Tissue analysis with μ-XRF, combined with μ-XANES, showed that cucumber (Cucumis sativus) plants absorb nanoscale TiO2 through the roots, with subsequent translocation to the fruit. (14) μ-XANES analyses also showed that in lettuce (Lactuca sativa) roots, soil weathered nanoscale CuO was almost completely transformed to reduced Cu (I)–sulfur and oxide complexes, whereas unweathered particles were more evident as parent CuO. (15) These advanced techniques show that the mechanisms of transformation of metal NPs are different and vary with both plant species and particle type. While it is true that nanoscale size can be extremely beneficial, using this justification without properly understanding the mechanisms of interaction and transformation between NPs and crops, leading to the tailored design of new nanoenabled agrochemicals, may in the long run undermine the potential of nanotechnology in agriculture, as has arguably happened in other fields. With this background, we present here a special issue of 16 papers dedicated to nanoenabled agrochemicals. This includes 15 research papers on a diverse range of topics, and one critical review. Five of the papers are focused on plant responses to nanoscale fertilizers. Both Huang et al. and Majumdar et al. are looking at metabolomic and proteomic end points of crop species (soybean, wheat, corn) upon exposure to molybdenum trioxide and copper hydroxide nanowires. Marmiroli et al. are looking specifically at the transcriptomic response of zucchini reproductive tissues to foliar copper oxide exposure, while Rawat et al. are evaluating the role of soil weathered CuO NPs on spinach foliar health. Read et al. are using advanced synchrotron techniques to characterize Zn distribution after foliar application of nanoscale and microscale particles to wheat. A group of three papers are investigating novel nanoscale strategies of nutrient supply. Gao et al. are investigating mesoporous silica coated ZnO NPs with tomato; Baddar and Unrine are also looking at ZnO NPs, focusing on the role of soil pH and coatings on overall efficacy. Meselhy et al. are evaluating the potential of nanoscale sulfur to enhance rice growth while simultaneously minimizing arsenic accumulation and phytotoxicity. A group of five papers are focused on nanoscale crop protection strategies. Four of these papers are focused on food crops with either fungal or bacterial pathogens, including lettuce, tomato, and watermelon. Kang et al. is specifically investigating the ability to synthetically tune nanoscale silica for controlled foliar release of silicic acid on Fusarium-infected watermelon. Similarly, Shang et al. is focused on controlled release of nanoscale copper oxide from hydrogels for increased resistance of lettuce to Fusarium. Ma et al. is evaluating the use of nanoscale hydroxyapatite to increase tomato tolerance to Fusarium infection, and Liao et al. is investigating nanoscale magnesium oxide as a strategy to control bacterial spot in tomato. Last, Elmer et al. demonstrates, for the first time, the ability of foliar nanoscale copper oxide to induce resistance to Fusarium in an ornamental species (Chrysanthemums). The last two research papers are focused on nanoparticle behavior in soil. Potter et al. are looking at nanoparticle-induced drought tolerance in wheat; Cervantes-Aviles et al. are investigating the transformation processes (dissolution, aggregation) of metal oxide nanoparticles as a function of root exudates and soil leachate. The final paper in the collection is a critical review article by Avellan et al. critically assessing the current state of knowledge on the role of inorganic nanomaterial properties on foliar uptake and systemic translocation within plant species. Collectively, these papers present cutting-edge research on the use of nanoscale materials in agricultural production systems. Our aim in creating this special issue is to further stimulate interest and research in this critical area of work. And the work is desperately needed; 20–30% increases in performance are not enough; we need to do better, and we need to do it quickly. While reading this impressive array of multidisciplinary work, keep in mind that nanotechnology is not the only solution to global food insecurity. However, it will be a valuable, effective, and sustainable tool in combating food inequity and supporting sustainable food production as part of the larger battle against global hunger. Dr. Jorge Gardea-Torresdey is the Richard Dudley Professor of Environmental Science & Engineering and Professor of Chemistry at The University of Texas at El Paso (UTEP). He obtained his M.S. and PhD. degrees from New Mexico State University, where he received the 2015 Distinguished Alumni Award. He joined UTEP in January of 1994. Within two years of joining UTEP as a faculty member, he became the Director of the Environmental Science and Engineering PhD Program, an administrative position he held until 2003, and in 2001 he became Chair of the Chemistry Department at UTEP; a position he held for 17 years. Dr. Gardea-Torresdey is a world leader in environmental nanotechnology and is a key investigator who has authored over 500 publications; he has received five U.S. patents for projects in environmental remediation. His research group was recognized as the first to discover the production of gold and silver nanoparticles in biological systems (Gardea-Torresdey, J.L. et al. Nano Lett 2002, 2 (4), 397–401; Gardea-Torresdey J.L., et, al. Langmuir 2003, 19 (4), 1357–1367). This discovery has been highlighted by important organizations including Nature and the Lawrence Hall of Science of the University of California Berkeley, among others. In 2018, 2019, and 2020, he was named by Clarivate Web of Science among world’s most highly cited researchers. The scientific contributions of Dr. Gardea-Torresdey have allowed him to receive many honors throughout his professional life. Among other awards, he has received the UTEP’s Graduate Mentor Award (2016), the 2017 Great Minds in STEM Award, the 2009 SACNAS Distinguished Scientist of the Year Award, and the 2012 Piper Professor Award, which is one of the most prestigious honors conferred to a professor in the State of Texas. Aside from his prestigious academic achievements, Dr. Gardea-Torresdey has been deeply involved in the scientific publishing field for over a decade. He began his career as an Editor of the Journal of Hazardous Materials from 2007 to 2010. In January 1, 2011 he was appointed Associate Editor of Environmental Science & Technology where he still remains presently. Dr. Jason C. White is the Director of the Connecticut Agricultural Experiment Station, the oldest Agricultural Experiment Station in the U.S. In addition to managing the annual agency budget of $13 million and approximately 105 scientific staff, Dr. White has a research program of $5.1 million in competitive funding/research. His primary research program focuses on food safety and security, with specific interests on the impact of nanomaterials on agricultural plants and on the use of nanoscale materials to increase food production through sustainable nanoenabled agriculture. Dr. White was elected to the Connecticut Academy of Science and Engineering in 2021 and is a member of the European Science Foundation (ESF) College of Experts. He is also a Commissioned Official of the United States Food and Drug Administration (US FDA). Dr. White is the Managing Editor for the International Journal of Phytoremediation, an Associate Editor for NanoImpact, on the editorial board of Environmental Pollution, and on the Editorial Advisory Boards of Environmental Science & Technology and Environmental Science & Technology Letters. Dr. White received the Environmental Science and Technology “Super Reviewer” Award in 2011, and the Inaugural 2020 Environmental Science & Technology Lifetime Reviewer Award. He also received the Environmental Science: Nano Outstanding Reviewer Award in 2016, 2018, 2019, and 2020. Dr. White was also a Clarivate Web of Science Highly Cited Researcher in 2020. He is the Immediate Past President of the International Phytotechnology Society. Dr. White received his Ph.D. in Environmental Toxicology from Cornell University in 1997 and has secondary appointments as a Clinical Professor of Epidemiology Yale School of Public Health, a Visiting Scientist at the Harvard University TH Chan School of Public Health, and as an Adjunct Faculty Member of the University of Massachusetts Stockbridge School of Agriculture. This article references 15 other publications.

中文翻译:

用于作物健康的纳米级农用化学品:全球粮食安全之战的关键进攻线

这篇文章是部分 纳米肥料的环境影响特刊。在未来三年内,安全、可持续地养活全球人口将是我们作为一个物种面临的最重大挑战之一。我们已经知道这一点有一段时间了。2009 年 6 月,粮食及农业组织(粮农组织)在罗马召开了为期 3 天的“专家会议”,并于同年 10 月在粮农组织总部召开了“高级别专家论坛”。讨论的问题很简单。“如何在 2050 年养活世界。” (1) 共识是存在解决方案,如果条件合适,到 2050 年可以生产足够的食物。十二年后,人们可以准确地争辩说这些解决方案难以捉摸。在此期间,地面上的许多情况发生了变化,或变得比预测的影响更大。这包括在 COVID-19 大流行期间证明的更快速变化的气候以及全球健康和供应链中的缺陷。尽管全球粮食安全问题很简单,但问题和解决方案却是高度复杂和多方面的。实现粮食安全的一个关键原则是未来农业实践的可持续性。尽管绿色革命以及农用化学品和灌溉的使用导致作物产量急剧增加,但维持此类系统的能源和水投入仍然很高。(2) 同样,肥料和农药的投放效率和利用率一直很低(<30%),有时甚至极低(<1%)。(2,3) 由于输送和吸收效率低,种植者经常过度应用以确保满足作物需求。这些做法对环境产生了深远的负面影响,从富营养化和有毒藻华到农药积累和对非目标物种的毒性。此外,目前不断变化的气候将使农业生产更加困难也是肯定的,不确定性只是速度有多快和有多糟糕。我们知道,气候变化将导致农业害虫和病原体等生物压力因素的范围显着扩大。例如,Deutsch 等人。(4) 模拟了地球表面温度每升高 1 度,全球水稻、玉米和小麦因害虫而造成的损失将增加 10-25%。病毒、细菌、真菌和原生动物病原体也可能出现类似的增加。非生物因素将面临类似的更大挑战,包括更强烈的极端温度、干旱和盐度。简而言之,我们将被迫在更贫瘠的土地和更困难的条件下种植粮食。此外,还有一些不可预见的因素在起作用。COVID-19 大流行使许多重要的社会问题成为人们关注的焦点,其中之一无疑是全球、区域和当地食品供应链的脆弱性。还必须指出的是,与我们社会中的许多其他问题一样,粮食不安全现在并且将来会充斥着不平等。对于我们每个全球公民来说,粮食不安全问题不会也不会是一样的。对于数量庞大且数量不断增加的人来说,这实际上意味着不知道下一顿饭从哪里来。对其他人来说,可能是营养不良或隐性饥饿;对于一些,它可能是当地大型商店的一条 8 美元的面包。可以肯定的是,所有人都会以某种方式受到粮食不安全的影响。所以,我们明白了。问题“巨大”,形势严峻。我们做什么?好吧,坦率地说,我们开始工作,我们做我们的工作。在 12 年前的粮农组织高级别专家论坛上,这被认为是一个可以解决的问题,我们认为现在仍然如此。那么,让我们来解决它。这就是本期特刊的内容 让我们解决它。这就是本期特刊的内容 让我们解决它。这就是本期特刊的内容环境科学与技术代表; 本期重点关注“纳米肥料对环境的影响”。正如我们许多人所知,材料在纳米尺度上表现不同。这些物理和化学差异具有生物学意义。纳米技术寻求利用这些独特的纳米级特性,在这里寻求开发战略和平台,以可持续地增加粮食产量,同时不仅最大限度地减少能源和水的投入,而且减少农业对环境的负面影响。(2) 在农业中使用纳米技术的概念并不新鲜;早在 2000 年就发表了一些论文,讨论了这些方法对粮食生产的潜在好处。(5,6) 值得注意的是,在那些“早期”年代,评论文章和观点文章的数量远远超过研究文章。造成这种情况的原因很复杂,包括难以将好的想法发展成可测试的研究问题,以及纳米毒理学领域的发展,这理所当然地将重点转移到了环境中的毒理学问题上。重要的是,对于许多纳米级材料,毒性和益处之间的差异是细微的,因为剂量或纳米颗粒 (NP) 类型或物种形成的变化很小。2018 年,Kah 等人。(7) 对 78 篇已发表的关于纳米农药和肥料的论文进行了分析,发现其功效比传统方法提高了 20-30%。重要的是,作者谈到了该领域的不成熟,许多研究缺乏质量保证和控制,并且普遍缺乏现场数据。我们与这项工作的配套文章确实强调了我们所看到的“巨大潜力的种子”,但指出对几乎所有方法普遍缺乏机械理解,无论是在材料的化学水平还是对材料的反应水平植物。(8) 这两篇论文确实强调了纳米技术在农业中的更广泛应用,其中包括更有效和反应灵敏的农用化学品输送、用于传达重要信息(害虫、疾病、水/营养状况)的纳米传感器、增加对生物(害虫)的耐受性、病原体)和非生物(干旱、温度、盐度)胁迫、增加光合作用、种子和作物的纳米生物强化,以及新型纳米级食品保鲜和食品包装平台。卡等人。(9) 在 2019 年年中报告说,该领域的研究和实际产品主要集中在纳米递送系统上,并且效率提高 20% 很常见。重要的是,已经发表了关于纳米技术应用的实地规模研究,作者强调,在 1993 年至 2016 年间,已申请了 3279 项关于农业纳米技术的专利,1254 项已被授予。重要的是,其中大部分是在 2014-2016 年期间获得的。作者认为,通往成功的道路需要融合。纳米技术在农业中的成功应用只能来自材料科学家、农学家、化学家、植物生理学家、毒理学家、生态学家和社会科学家等的综合专业知识。次年,霍夫曼等人。(10) 不仅探索了纳米技术在农业中的潜在应用和好处,还评估了不同方法的技术准备情况和性能,确定了部署需要克服的主要障碍,包括扩大到现场交付、监管和安全问题,以及消费者的接受度。重要的是,该小组提供了克服这些障碍的策略,例如明智的材料选择和合成、最大限度减少人类和生态系统暴露的应用场景、建立哨点研究站点、使用先进的分析工具检测暴露和影响,以及重要的从开发到部署的整个过程中的利益相关者参与。该论文还讨论了新的应用,例如使用 CRISPR-cas9 进行基因组工程,以及用于激活 RNA 干扰 (RNAi) 途径以控制植物害虫/病原体的遗传材料的纳米级传递。最近,在 Kah 对 2018 年 78 篇论文进行分析三年后,2021 年 7 月的一次谷歌学者搜索发现 456 篇论文的标题中同时包含“纳米技术”和“农业”。也许更重要的是,在 2019 年恢复了 3279 项专利和 1254 项授权的相同搜索词现在返回了 9791 项和 2301 项在 2021 年 7 月的授权。这些值代表了两年内相当显着的增长,我们认为这是快速增长的明确信号纳米技术在农业中的兴趣和巨大潜力。然而,正如 Gilbertson 等人所指出的那样,(11) 纳米材料在食品生产系统中的潜在广泛使用需要谨慎和系统级了解这些材料在整个生命周期中的命运和影响。很明显,不仅对作用机制的透彻了解,而且对电晕形成和溶解/聚集等动态转化过程的了解,对于纳米技术在农业和环境中的安全和可持续部署都至关重要。(12) 例如,基于同步加速器的技术,包括 X 射线吸收近边结构 (XANES) 和微 X 射线荧光 (μ-XRF),已被用于研究一些主要作物的纳米材料转化机制。XANES 的使用表明纳米级 CeO 很明显,不仅对作用机制的透彻了解,而且对电晕形成和溶解/聚集等动态转化过程的了解,对于纳米技术在农业和环境中的安全和可持续部署都至关重要。(12) 例如,基于同步加速器的技术,包括 X 射线吸收近边结构 (XANES) 和微 X 射线荧光 (μ-XRF),已被用于研究一些主要作物的纳米材料转化机制。XANES 的使用表明纳米级 CeO 很明显,不仅对作用机制的透彻了解,而且对电晕形成和溶解/聚集等动态转化过程的了解,对于纳米技术在农业和环境中的安全和可持续部署都至关重要。(12) 例如,基于同步加速器的技术,包括 X 射线吸收近边结构 (XANES) 和微 X 射线荧光 (μ-XRF),已被用于研究一些主要作物的纳米材料转化机制。XANES 的使用表明纳米级 CeO 包括 X 射线吸收近边结构 (XANES) 和微 X 射线荧光 (μ-XRF),已被用于研究一些主要作物中纳米材料的转化机制。XANES 的使用表明纳米级 CeO 包括 X 射线吸收近边结构 (XANES) 和微 X 射线荧光 (μ-XRF),已被用于研究一些主要作物中纳米材料的转化机制。XANES 的使用表明纳米级 CeO2在大豆根部(Glycine max)中积累和储存,很少或没有转化,而未检测到纳米级 ZnO。(13) μ-XRF 结合 μ-XANES 的组织分析表明,黄瓜 ( Cucumis sativus ) 植物通过根部吸收纳米级 TiO 2,随后转移到果实中。(14) μ-XANES 分析还表明,在生菜(Lactuca sativa) 根,土壤风化的纳米级 CuO 几乎完全转化为还原的 Cu (I)-硫和氧化物复合物,而未风化的颗粒作为母体 CuO 更明显。(15) 这些先进的技术表明,金属 NPs 的转化机制是不同的,并且因植物种类和颗粒类型而异。虽然纳米级尺寸确实非常有益,但在没有正确理解纳米颗粒与作物之间相互作用和转化机制的情况下使用这种理由,导致新型纳米农用化学品的定制设计,从长远来看可能会削弱纳米技术在农业方面的潜力。农业,正如在其他领域可能发生的那样。在此背景下,我们在此特刊发表了 16 篇专门讨论纳米农用化学品的论文。这包括 15 篇关于不同主题的研究论文,以及一篇批判性评论。其中五篇论文的重点是植物对纳米肥料的反应。黄等人。和 Majumdar 等人。正在研究暴露于三氧化钼和氢氧化铜纳米线的作物物种(大豆、小麦、玉米)的代谢组学和蛋白质组学终点。马尔米罗利等人。正在专门研究西葫芦生殖组织对叶面氧化铜暴露的转录组反应,而 Rawat 等人。正在评估土壤风化 CuO NPs 对菠菜叶健康的作用。阅读等。正在使用先进的同步加速器技术来表征纳米级和微米级颗粒叶面喷洒小麦后的锌分布。一组三篇论文正在研究营养供应的新型纳米级策略。高等人。正在研究带有番茄的介孔二氧化硅包覆的 ZnO 纳米颗粒;Baddar 和 Unrine 也在研究 ZnO NP,重点关注土壤 pH 值和涂层对整体功效的影响。梅塞利等人。正在评估纳米级硫在促进水稻生长的同时最大限度地减少砷积累和植物毒性的潜力。一组五篇论文专注于纳米级作物保护策略。其中四篇论文的重点是带有真菌或细菌病原体的粮食作物,包括生菜、番茄和西瓜。康等人。正在专门研究合成调节纳米级二氧化硅的能力,以控制硅酸在叶片上的释放 梅塞利等人。正在评估纳米级硫在促进水稻生长的同时最大限度地减少砷积累和植物毒性的潜力。一组五篇论文专注于纳米级作物保护策略。其中四篇论文的重点是带有真菌或细菌病原体的粮食作物,包括生菜、番茄和西瓜。康等人。正在专门研究合成调节纳米级二氧化硅的能力,以控制硅酸在叶片上的释放 梅塞利等人。正在评估纳米级硫在促进水稻生长的同时最大限度地减少砷积累和植物毒性的潜力。一组五篇论文专注于纳米级作物保护策略。其中四篇论文的重点是带有真菌或细菌病原体的粮食作物,包括生菜、番茄和西瓜。康等人。正在专门研究合成调节纳米级二氧化硅的能力,以控制硅酸在叶片上的释放 番茄和西瓜。康等人。正在专门研究合成调节纳米级二氧化硅的能力,以控制硅酸在叶片上的释放 番茄和西瓜。康等人。正在专门研究合成调节纳米级二氧化硅的能力,以控制硅酸在叶片上的释放被镰刀菌感染的西瓜。同样,尚等人。专注于从水凝胶中受控释放纳米级氧化铜,以提高生菜对镰刀菌的抵抗力。马等人。正在评估使用纳米级羟基磷灰石来提高番茄对镰刀菌感染的耐受性,Liao 等人。正在研究纳米级氧化镁作为控制番茄细菌斑点的策略。最后,埃尔默等人。首次证明了叶面纳米级氧化铜诱导对镰刀菌的抗性的能力在观赏物种(菊花)中。最后两篇研究论文集中在土壤中的纳米颗粒行为。波特等人。正在研究纳米颗粒引起的小麦耐旱性;塞万提斯-阿维莱斯等人。正在研究金属氧化物纳米粒子的转化过程(溶解、聚集)作为根系分泌物和土壤渗滤液的函数。合集中的最后一篇论文是 Avellan 等人的一篇批判性评论文章。批判性地评估目前关于无机纳米材料特性对植物物种内的叶面吸收和系统易位的作用的知识状态。总的来说,这些论文展示了在农业生产系统中使用纳米材料的前沿研究。我们创建这一特刊的目的是进一步激发对这一关键工作领域的兴趣和研究。并且迫切需要这项工作;性能提高 20-30% 是不够的;我们需要做得更好,我们需要尽快做到。在阅读这些令人印象深刻的多学科著作时,请记住,纳米技术并不是解决全球粮食不安全问题的唯一方法。然而,作为对抗全球饥饿的更广泛斗争的一部分,它将成为打击粮食不平等和支持可持续粮食生产的宝贵、有效和可持续的工具。Jorge Gardea-Torresdey 博士是德克萨斯大学埃尔帕索分校 (UTEP) 环境科学与工程的 Richard Dudley 教授和化学教授。他获得了硕士和博士学位。新墨西哥州立大学学位,在那里他获得了 2015 年杰出校友奖。他于 1994 年 1 月加入 UTEP。在作为教员加入 UTEP 两年内,他成为环境科学与工程博士项目的主任,他一直担任行政职位直到 2003 年,并于 2001 年成为化学系主任在 UTEP;他担任了 17 年的职位。Gardea-Torresdey 博士是环境纳米技术领域的世界领导者,是一位重要的研究人员,撰写了 500 多篇出版物;他已获得五项美国环境修复项目专利。他的研究小组被公认为第一个在生物系统中发现金和银纳米颗粒的产生(Gardea-Torresdey,JL 等人,2007 年)。在作为教员加入 UTEP 的两年内,他成为环境科学与工程博士项目的主任,他担任行政职位直到 2003 年,并于 2001 年成为 UTEP 化学系主任;他担任了 17 年的职位。Gardea-Torresdey 博士是环境纳米技术领域的世界领导者,是一位重要的研究人员,撰写了 500 多篇出版物;他已获得五项美国环境修复项目专利。他的研究小组被公认为第一个在生物系统中发现金和银纳米颗粒的产生(Gardea-Torresdey,JL 等人,2007 年)。在作为教员加入 UTEP 的两年内,他成为环境科学与工程博士项目的主任,直到 2003 年他一直担任行政职务,并于 2001 年成为 UTEP 化学系主任;他担任了 17 年的职位。Gardea-Torresdey 博士是环境纳米技术领域的世界领导者,是一位重要的研究人员,撰写了 500 多篇出版物;他已获得五项美国环境修复项目专利。他的研究小组被公认为第一个在生物系统中发现金和银纳米颗粒的产生(Gardea-Torresdey,JL 等人,2007 年)。他担任了 17 年的职位。Gardea-Torresdey 博士是环境纳米技术领域的世界领导者,是一位重要的研究人员,撰写了 500 多篇出版物;他已获得五项美国环境修复项目专利。他的研究小组被公认为第一个在生物系统中发现金和银纳米颗粒的产生(Gardea-Torresdey,JL 等人,2007 年)。他担任了 17 年的职位。Gardea-Torresdey 博士是环境纳米技术领域的世界领导者,是一位重要的研究人员,撰写了 500 多篇出版物;他已获得五项美国环境修复项目专利。他的研究小组被公认为第一个在生物系统中发现金和银纳米颗粒的产生(Gardea-Torresdey,JL 等人,2007 年)。Nano Lett 2002, 2 (4), 397–401; Gardea-Torresdey JL 等人。朗缪尔2003, 19(4),1357-1367)。这一发现得到了包括自然和加州大学伯克利分校劳伦斯科学馆在内的重要组织的重视。2018 年、2019 年和 2020 年,他被 Clarivate Web of Science 评为世界上被引用次数最多的研究人员。Gardea-Torresdey 博士的科学贡献使他在整个职业生涯中获得了许多荣誉。在其他奖项中,他获得了 UTEP 的研究生导师奖(2016 年)、2017 年 STEM 杰出思想奖、2009 年 SACNAS 年度杰出科学家奖和 2012 年派珀教授奖,这是授予的最负盛名的荣誉之一德克萨斯州的一位教授。除了他享有盛誉的学术成就,博士。Gardea-Torresdey 十多年来一直深入参与科学出版领域。他开始了他的职业生涯,担任编辑Journal of Hazardous Materials 2007-2010 . 2011年1月1日任Environmental Science & Technology副主编他现在还留在那里。Jason C. White 博士是美国最古老的农业实验站康涅狄格农业实验站的主任 除了管理 1300 万美元的年度机构预算和大约 105 名科学人员之外,怀特博士还有一个 5.1 美元的研究计划百万美元的竞争性资金/研究。他的主要研究项目侧重于食品安全和保障,特别关注纳米材料对农业植物的影响以及使用纳米材料通过可持续纳米农业增加粮食产量。Dr. White was elected to the Connecticut Academy of Science and Engineering in 2021 and is a member of the European Science Foundation (ESF) College of Experts. 他还是美国食品和药物管理局 (US FDA) 的委托官员。怀特博士是该杂志的执行编辑International Journal of PhytoremediationNanoImpact副主编,Environmental Pollution编辑委员会,Environmental Science & TechnologyEnvironmental Science & Technology Letters编辑顾问委员会成员。怀特博士于 2011 年获得环境科学与技术“超级审稿人”奖,以及 2020 年首届环境科学与技术终身审稿人奖。他还获得了环境科学:纳米2016 年、2018 年、2019 年和 2020 年杰出审稿人奖。 White 博士还是 2020 年 Clarivate Web of Science 高被引研究员。他是国际植物技术学会的前任主席。怀特博士获得了博士学位。1997 年获得康奈尔大学环境毒理学博士学位,并担任耶鲁大学公共卫生学院流行病学临床教授、哈佛大学 TH Chan 公共卫生学院访问科学家以及马萨诸塞大学斯托克布里奇分校的兼职教员农学院。本文引用了 15 篇其他出版物。
更新日期:2021-10-19
down
wechat
bug