当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fundamental role of Fe–N–C active sites in a CO2-derived ultra-porous carbon electrode for inhibiting shuttle phenomena in Li–S batteries
Journal of Materials Chemistry A ( IF 11.9 ) Pub Date : 2021-10-18 , DOI: 10.1039/d1ta07415f
Jeongwoo Yang 1 , Dong Woo Kang 1 , Hodong Kim 1 , Jae Hyun Park 1 , Won Yeong Choi 1 , Jae W. Lee 1
Affiliation  

The homogeneous distribution of electrochemical catalysts in a carbon material with an ultrahigh pore volume and large surface area is a promising strategy for rapid conversion of lithium polysulfides to minimize the shuttle phenomenon. This work utilizes a porous carbon material produced via facile CO2 conversion to achieve both the confinement of sulfur and the uniform distribution of Fe–N–C sites. It also seeks to dope more N atoms and increase porosity through a unique method of bubbling an ammonia solution, which increases the density of the Fe–N–C catalytically active sites and forms additional pores, providing numerous pathways for more efficient diffusion of Li ions. The increased pore volume maximizes the kinetics of polysulfide conversion through synergy with the catalysts distributed over the high surface area of the resulting product. DFT calculations elucidate the fundamental role of the Fe–N–C catalyst in terms of the energy reduction associated with the lithium polysulfide conversion process and enhanced Li-ion diffusion dynamics. The assembled cell exhibits a capacity of 590 mA h g−1 up to 150 cycles at a high current density of 7.0C, and a maximum areal capacity of 3.54 mA h cm−2 is delivered at 1.0C for a high sulfur amount of 4.3 mg cm−2.

中文翻译:

Fe-N-C活性位点在CO2衍生的超多孔碳电极中抑制Li-S电池穿梭现象的基本作用

电化学催化剂在具有超高孔体积和大表面积的碳材料中的均匀分布是快速转化多硫化锂以最小化穿梭现象的有前途的策略。这项工作利用了通过简单的 CO 2生产的多孔碳材料以实现硫的限制和 Fe-N-C 位点的均匀分布。它还试图通过一种独特的氨溶液鼓泡方法来掺杂更多的 N 原子并增加孔隙率,这增加了 Fe-N-C 催化活性位点的密度并形成了额外的孔,为锂离子的更有效扩散提供了许多途径. 通过与分布在所得产品高表面积上的催化剂的协同作用,增加的孔体积使多硫化物转化动力学最大化。DFT 计算阐明了 Fe-N-C 催化剂在与多硫化锂转化过程相关的能量减少和增强的锂离子扩散动力学方面的基本作用。组装后的电池容量为 590 mA hg -1在 7.0C 的高电流密度下最多可进行 150 次循环,并且在 1.0C 下对于 4.3 mg cm -2 的高硫量可提供3.54 mAh cm -2的最大面积容量。
更新日期:2021-10-18
down
wechat
bug