当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Amorphous-Ga2O3 Optoelectronic Synapses with Ultra-low Energy Consumption
Advanced Electronic Materials ( IF 6.2 ) Pub Date : 2021-10-17 , DOI: 10.1002/aelm.202100741
Rui Zhu 1, 2, 3 , Huili Liang 1, 2 , Sigui Hu 2 , Yan Wang 1, 2 , Zengxia Mei 1, 2
Affiliation  

Developing optoelectronic synaptic devices with low energy consumption is of critical importance for neuromorphic computing and visualization systems. In this work, amorphous-Ga2O3 (a-Ga2O3) is adopted to realize a low-power optoelectronic synapse considering its distinguished features of ultra-wide bandgap, high responsiveness to light stimulation, and strong persistent photoconductivity effect. The basic synaptic functions such as short-term plasticity (STP) and long-term plasticity (LTP) have been successfully mimicked. A noise suppression capability is achieved as well, similar to the visual cells. Strikingly, the total energy consumption for triggering an LTP synaptic event is only 136 fJ, approaching the one of a biological synapse. The underlying mechanism for the a-Ga2O3 synaptic performance is explored with a combined research of X-ray photoelectron spectroscopy, Kelvin probe force microscopy, electric tests, and Technology Computer-Aided Design simulations. The consistent results suggest the key role of the synergetic modulation effect of optical and electric fields on the dynamic behaviors of oxygen vacancy (VO) defects. This work indicates the potential applications of a-Ga2O3 in low-power optoelectronic synapses.

中文翻译:

具有超低能耗的非晶-Ga2O3 光电突触

开发具有低能耗的光电突触设备对于神经形态计算和可视化系统至关重要。在这项工作中,非晶-Ga 2 O 3 (a-Ga 2 O 3) 用于实现低功率光电突触,考虑到其超宽带隙、对光刺激的高响应性和强持久光电导效应的显着特点。基本的突触功能,如短期可塑性 (STP) 和长期可塑性 (LTP) 已被成功模仿。与视觉单元类似,还实现了噪声抑制能力。引人注目的是,触发 LTP 突触事件的总能量消耗仅为 136 fJ,接近生物突触的能量消耗。a-Ga 2 O 3的基本机制突触性能通过 X 射线光电子能谱、开尔文探针力显微镜、电测试和技术计算机辅助设计模拟的综合研究来探索。一致的结果表明的光学和电场的协同调制效果上的氧空位(V的动态行为中的关键作用ö)缺陷。这项工作表明a-Ga 2 O 3在低功率光电突触中的潜在应用。
更新日期:2021-10-17
down
wechat
bug