当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emergence of viscosity and dissipation via stochastic bonds
Journal of the Mechanics and Physics of Solids ( IF 5.3 ) Pub Date : 2021-10-16 , DOI: 10.1016/j.jmps.2021.104660
Travis Leadbetter 1 , Ali Seiphoori 2 , Celia Reina 3 , Prashant K. Purohit 3
Affiliation  

“Viscosity is the most ubiquitous dissipative mechanical behavior” (Maugin, 1999). Despite its ubiquity, even for those systems where the mechanisms causing viscous and other forms of dissipation are known there are only a few quantitative models that extract the macroscopic rheological response from these microscopic mechanisms. One such mechanism is the stochastic breaking and forming of bonds which is present in polymer networks with transient cross-links, strong inter-layer bonding between graphene sheets, and sliding dry friction. In this paper we utilize a simple yet flexible model to show analytically how stochastic bonds can induce an array of rheological behaviors at the macroscale. We find that varying the bond interactions induces a Maxwell-type macroscopic material behavior with Newtonian viscosity, shear thinning, shear thickening, or solid like friction when subjected to shear at constant rates. When bond rupture is independent of the force applied, Newtonian viscosity is the predominant behavior. When bond breaking is accelerated by the applied force, a shear thinning response becomes most prevalent. Further connections of the macroscopic response to the interaction potential and rates of bonding and unbonding are illustrated through phase diagrams and analysis of limiting cases. Finally, we apply this model to polymer networks and to experimental data on “solid bridges” in polydisperse granular media. We imagine possible applications to material design through engineering bonds with specific interactions to bring about a desired macroscopic behavior.



中文翻译:

通过随机键出现粘度和耗散

“粘度是最普遍的耗散机械行为”(Maugin,1999)。尽管它无处不在,但即使对于那些已知导致粘性和其他形式耗散的机制的系统,也只有少数定量模型可以从这些微观机制中提取宏观流变响应。一种这样的机制是随机断裂和形成键,它存在于聚合物网络中,具有瞬时交联、石墨烯片之间的强层间键合和滑动干摩擦。在本文中,我们利用一个简单而灵活的模型来分析展示随机键如何在宏观尺度上引发一系列流变行为。我们发现改变键相互作用会诱导麦克斯韦型宏观材料行为,具有牛顿粘度、剪切稀化、剪切增稠、或在恒定速率下受到剪切时类似固体的摩擦。当键断裂与施加的力无关时,牛顿粘度是主要行为。当施加的力加速键断裂时,剪切变稀反应变得最普遍。通过相图和极限情况分析,进一步说明了宏观响应与相互作用势和键合和解键率之间的进一步联系。最后,我们将该模型应用于聚合物网络和多分散颗粒介质中“固体桥”的实验数据。我们设想通过工程结合与特定相互作用来实现材料设计的可能应用,以实现所需的宏观行为。牛顿粘度是主要行为。当施加的力加速键断裂时,剪切变稀反应变得最普遍。通过相图和极限情况分析,进一步说明了宏观响应与相互作用势和键合和解键率之间的进一步联系。最后,我们将该模型应用于聚合物网络和多分散颗粒介质中“固体桥”的实验数据。我们设想通过工程结合与特定相互作用来实现材料设计的可能应用,以实现所需的宏观行为。牛顿粘度是主要行为。当施加的力加速键断裂时,剪切变稀反应变得最普遍。通过相图和极限情况分析,进一步说明了宏观响应与相互作用势和键合和解键率之间的进一步联系。最后,我们将该模型应用于聚合物网络和多分散颗粒介质中“固体桥”的实验数据。我们设想通过工程结合与特定相互作用来实现材料设计的可能应用,以实现所需的宏观行为。通过相图和极限情况分析,进一步说明了宏观响应与相互作用势和键合和解键率之间的进一步联系。最后,我们将该模型应用于聚合物网络和多分散颗粒介质中“固体桥”的实验数据。我们设想通过工程结合与特定相互作用来实现材料设计的可能应用,以实现所需的宏观行为。通过相图和极限情况分析,进一步说明了宏观响应与相互作用势和键合和解键率之间的进一步联系。最后,我们将该模型应用于聚合物网络和多分散颗粒介质中“固体桥”的实验数据。我们设想通过工程结合与特定相互作用来实现材料设计的可能应用,以实现所需的宏观行为。

更新日期:2021-10-28
down
wechat
bug