当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering Cyanobacterium with Transmembrane Electron Transfer Ability for Bioelectrochemical Nitrogen Fixation
ACS Catalysis ( IF 12.9 ) Pub Date : 2021-10-15 , DOI: 10.1021/acscatal.1c03038
Fangyuan Dong 1 , Yoo Seok Lee 1 , Erin M. Gaffney 1 , Willisa Liou 1 , Shelley D. Minteer 1
Affiliation  

Increasing attention has been paid to bioelectrochemical nitrogen fixation (e-BNF) as a promising approach to achieve the NH3 synthesis under mild conditions. However, currently developed microbial e-BNF systems all rely on diffusible mediators to deliver redox equivalents inside the bacteria. Challenges of using diffusible mediators include toxicity, inefficient transmembrane diffusion, mediator inactivation, mediator contamination, and low energy efficiency. To date, e-BNF through transmembrane electron uptake without using diffusible electron mediators has not yet been reported. Herein, we describe a genetic strategy to engineer cyanobacterium Synechococcus elongatus PCC 7942 with transmembrane electron transfer (TET) ability to realize e-BNF without the addition of soluble mediators. The engineered S. elongatus PCC 7942 strain Se-nif with N2 fixation activity was further transformed with an outer membrane protein cytochrome S OmcS, which contributes for the extracellular electron transfer (EET) ability of Geobacter sp. The engineered Senifom strain exhibited enhanced TET ability resulting in an approximately 13-fold higher NH3 production rate than the corresponding Se-nif strain. The Faradaic efficiency of the Senifom e-BNF system was calculated to be approximately 23.3%, which is higher than the previously reported e-BNF systems. The electron pathway of the obtained extracellular electron was briefly analyzed and an extracellular electron uptake mechanism in the Senifom strain was proposed. This work demonstrates that a genetically engineered conduit can facilitate transmembrane electronic communication from the electrode to living cells, thereby providing insights into bioelectrosynthesis technology, especially the e-BNF systems and ammonium production.

中文翻译:

具有跨膜电子转移能力的工程蓝细菌用于生物电化学固氮

生物电化学固氮 (e-BNF) 作为一种在温和条件下实现 NH 3合成的有前途的方法越来越受到关注。然而,目前开发的微生物 e-BNF 系统都依赖于可扩散介质在细菌内部传递氧化还原当量。使用可扩散介质的挑战包括毒性、跨膜扩散效率低下、介质失活、介质污染和低能效。迄今为止,尚未报道通过跨膜电子摄取而不使用可扩散电子介质的 e-BNF。在此,我们描述了一种改造蓝藻细长聚球藻的遗传策略PCC 7942 具有跨膜电子转移 (TET) 能力,无需添加可溶性介质即可实现 e-BNF。具有 N 2固定活性的工程化S. elongatus PCC 7942 菌株Se-nif进一步用外膜蛋白细胞色素 S OmcS 转化,这有助于地杆菌属的细胞外电子转移 (EET) 能力。工程化的Senifom菌株表现出增强的 TET 能力,导致 NH 3生产率比相应的Se-nif菌株高约 13 倍。Senifom的法拉第效率e-BNF 系统经计算约为 23.3%,高于之前报道的 e-BNF 系统。简要分析了获得的细胞外电子的电子途径,并提出了Senifom菌株的细胞外电子摄取机制。这项工作表明,基因工程管道可以促进从电极到活细胞的跨膜电子通信,从而提供对生物电合成技术,尤其是 e-BNF 系统和铵生产的深入了解。
更新日期:2021-11-05
down
wechat
bug