当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimized orbital occupancy of transition metal in spinel Ni-Co oxides with heteroatom doping for Aprotic Li-O2 battery
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2021-10-14 , DOI: 10.1016/j.cej.2021.132977
Longfei Ren 1 , Ruixin Zheng 1 , Dayue Du 1 , Yu Yan 1 , Miao He 1 , Zhiqun Ran 1 , Minglu Li 1 , Chaozhu Shu 1
Affiliation  

Li-O2 battery is one of the most attractive energy storage technologies because of its extremely high energy density (3500 Wh kg−1). However, the main limitation of the battery is the high energy barrier during the formation and decomposition of the discharge product (Li2O2), which results in a series of problems such as large overpotential and poor cycle stability. Herein, the Fe-doped spinel Ni-Co oxides are employed as the cathode catalyst to decrease the energy barrier of the oxygen electrode reactions in Li-O2 battery. The batteries with Fe-doped Ni-Co oxides deliver a large discharge specific capacity of 16,727 mAh g−1 and remarkable durability of over 790 h at current density of 500 mA g−1. Based on the density functional theory (DFT) calculation, the optimized performance is attributed to the near-unity eg electron occupancy (1.32) in transition metal atom for iron-doped Ni-Co oxide as compared to that for undoped Ni-Co oxide (1.64). The near-unity eg electron occupancy can increase the covalency of transition metal-oxygen bonds and finally enhance the electrocatalytic activity. This study is helpful for deeply understanding the relationship between the surface electronic structure and catalytic activity of oxygen electrocatalysts in Li-O2 cells.



中文翻译:

用于非质子锂氧电池的杂原子掺杂尖晶石镍钴氧化物中过渡金属的优化轨道占有率

Li-O 2电池因其极高的能量密度(3500 Wh kg -1)而成为最具吸引力的储能技术之一。然而,电池的主要局限在于放电产物(Li 2 O 2)形成和分解过程中的高能垒,导致过电位大、循环稳定性差等一系列问题。在此,Fe掺杂的尖晶石Ni-Co氧化物用作阴极催化剂以降低Li-O 2电池中氧电极反应的能量势垒。具有 Fe 掺杂的 Ni-Co 氧化物的电池提供了 16,727 mAh g -1的大放电比容量并且在 500 mA g -1 的电流密度下具有超过 790 小时的卓越耐久性。基于密度泛函理论(DFT)计算,优化的性能归因于近统一Ê电子占有相比,对于未掺杂的镍钴氧化物为掺杂铁的镍-钴氧化物(1.32)中的过渡金属原子(1.64)。近统一Ê电子占有可以增加过渡金属-氧键的共价性和最终提高的电催化活性。该研究有助于深入了解Li-O 2电池中氧电催化剂的表面电子结构与催化活性之间的关系。

更新日期:2021-10-20
down
wechat
bug