当前位置: X-MOL 学术Commun. Nonlinear Sci. Numer. Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamics of transformed nonlinear waves in the (3+1)-dimensional B-type Kadomtsev–Petviashvili equation I: Transitions mechanisms
Communications in Nonlinear Science and Numerical Simulation ( IF 3.9 ) Pub Date : 2021-10-12 , DOI: 10.1016/j.cnsns.2021.106070
Xue Zhang 1 , Lei Wang 1 , Wei-Qin Chen 1 , Xue-Min Yao 2 , Xin Wang 3 , Yin-Chuan Zhao 1
Affiliation  

We explore the dynamical properties of transformed nonlinear waves (TNWs) for the (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation describing the propagation of waves in fluids. The breath-wave solution is first given by the Hirota bilinear method. Different from the (1+1)- or (2+1)-dimensional case, three types of conversion conditions are analytically derived in different spatial coordinates, by which the breath waves can be converted into diverse TNWs, including the M-shaped kink soliton, kink soliton with multi peaks, (quasi-) kink soliton, and (quasi-) periodic wave. In addition, an attractive dynamic mechanism of high-dimensional nonlinear waves is investigated, where the shape-changed evolution of these waves can be observed. Then the gradient relationship of the TNWs is illustrated in terms of the wave number ratio of superposition components. The formation mechanism of TNWs is further analyzed based on the analysis of nonlinear superposition and phase shift. Different from previous result, the wave component for the (3+1)-dimensional BKP shows the kink-shaped profile, instead of the bell-shaped one. The principle of the nonlinear superposition is further used to explicate the essence of oscillation, locality and shape-changed evolution of the TNWs. The lump wave is finally transformed into the line rogue wave (LRW) showing the short-lived property. This indicates that the LRWs could be incorporated into the framework of TNWs in some high-dimensional systems.



中文翻译:

(3+1) 维 B 型 Kadomtsev-Petviashvili 方程 I 中变换非线性波的动力学:转换机制

我们探索了用于描述波在流体中传播的 (3+1) 维 B 型 Kadomtsev-Petviashvili (BKP) 方程的变换非线性波 (TNW) 的动力学特性。呼吸波解首先由 Hirota 双线性方法给出。与(1+1)-或(2+1)-维情况不同,在不同的空间坐标下解析导出三种类型的转换条件,通过这些条件可以将呼吸波转换为不同的TNW,包括M形扭结孤子、具有多峰的扭结孤子、(准)扭结孤子和(准)周期波。此外,研究了高维非线性波的一种有吸引力的动力学机制,可以观察到这些波的形状变化演化。然后用叠加分量的波数比来说明TNW的梯度关系。在非线性叠加和相移分析的基础上,进一步分析了TNWs的形成机制。与之前的结果不同,(3+1) 维 BKP 的波浪分量显示出扭结形状的轮廓,而不是钟形轮廓。进一步利用非线性叠加原理解释了TNW的振荡、局域性和形变演化的本质。块波最终转换为线流氓波(LRW),显示出短暂的特性。这表明在某些高维系统中,LRWs 可以被纳入到 TNWs 的框架中。在非线性叠加和相移分析的基础上,进一步分析了TNWs的形成机制。与之前的结果不同,(3+1) 维 BKP 的波浪分量显示出扭结形状的轮廓,而不是钟形轮廓。进一步利用非线性叠加原理解释了TNW的振荡、局域性和形变演化的本质。块波最终转化为线流氓波(LRW),显示出短暂的特性。这表明在某些高维系统中,LRWs 可以被纳入到 TNWs 的框架中。在非线性叠加和相移分析的基础上,进一步分析了TNWs的形成机制。与之前的结果不同,(3+1) 维 BKP 的波浪分量显示出扭结形状的轮廓,而不是钟形轮廓。进一步利用非线性叠加原理解释了TNW的振荡、局域性和形变演化的本质。块波最终转化为线流氓波(LRW),显示出短暂的特性。这表明在某些高维系统中,LRWs 可以被纳入到 TNWs 的框架中。进一步利用非线性叠加原理解释了TNW的振荡、局域性和形变演化的本质。块波最终转化为线流氓波(LRW),显示出短暂的特性。这表明在某些高维系统中,LRWs 可以被纳入到 TNWs 的框架中。进一步利用非线性叠加原理解释了TNW的振荡、局域性和形变演化的本质。块波最终转化为线流氓波(LRW),显示出短暂的特性。这表明在某些高维系统中,LRWs 可以被纳入到 TNWs 的框架中。

更新日期:2021-10-25
down
wechat
bug