当前位置: X-MOL 学术Int. J. Robot. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A bathymetric mapping and SLAM dataset with high-precision ground truth for marine robotics
The International Journal of Robotics Research ( IF 9.2 ) Pub Date : 2021-10-11 , DOI: 10.1177/02783649211044749
Kristopher Krasnosky 1 , Christopher Roman 1 , David Casagrande 1
Affiliation  

In recent years, sonar systems for surface and underwater vehicles have increased in resolution and become significantly less expensive. As such, these systems are viable at a wide range of price points and are appropriate for a broad set of applications on surface and underwater vehicles. However, to take full advantage of these high-resolution sensors for seafloor mapping tasks an adequate navigation solution is also required. In GPS-denied environments this usually necessitates a simultaneous localization and mapping (SLAM) technique to maintain good accuracy with minimal error accumulation. Acoustic positioning systems such as ultra short baseline (USBL) and long baseline (LBL) are sometimes deployed to provide additional bounds on the navigation solution, but the positional uncertainty of these systems is often much greater than the resolution of modern multibeam or interferometric side scan sonars. As such, subsurface vehicles often lack the means to adequately ground-truth navigation solutions and the resulting bathymetic maps. In this article, we present a dataset with four separate surveys designed to test bathymetric SLAM algorithms using two modern sonars, typical underwater vehicle navigation sensors, and high-precision (2 cm horizontal, 10 cm vertical) real-time kinematic (RTK) GPS ground truth. In addition, these data can be used to refine and improve other aspects of multibeam sonar mapping such as ray-tracing, gridding techniques, and time-varying attitude corrections.



中文翻译:

用于海洋机器人的具有高精度地面实况的测深映射和 SLAM 数据集

近年来,用于水面和水下航行器的声纳系统的分辨率有所提高,并且价格明显降低。因此,这些系统在广泛的价格点上都是可行的,并且适用于水面和水下航行器的广泛应用。然而,为了充分利用这些高分辨率传感器进行海底测绘任务,还需要适当的导航解决方案。在 GPS 拒绝的环境中,这通常需要同时定位和映射 (SLAM) 技术,以保持良好的准确性,同时将误差累积降至最低。有时会部署诸如超短基线 (USBL) 和长基线 (LBL) 之类的声学定位系统来为导航解决方案提供额外的界限,但这些系统的位置不确定性通常比现代多波束或干涉式侧扫声纳的分辨率大得多。因此,地下车辆通常缺乏足够的地面实况导航解决方案和由此产生的深海地图。在本文中,我们展示了一个包含四个独立调查的数据集,旨在使用两个现代声纳、典型的水下航行器导航传感器和高精度(水平 2 厘米,垂直 10 厘米)实时运动学 (RTK) GPS 来测试测深 SLAM 算法地面真相。此外,这些数据可用于改进和改进多波束声纳测绘的其他方面,例如光线追踪、网格技术和时变姿态校正。地下车辆往往缺乏足够的地面实况导航解决方案和由此产生的深海地图。在本文中,我们展示了一个包含四个独立调查的数据集,旨在使用两个现代声纳、典型的水下航行器导航传感器和高精度(水平 2 厘米,垂直 10 厘米)实时运动学 (RTK) GPS 来测试测深 SLAM 算法地面真相。此外,这些数据可用于改进和改进多波束声纳测绘的其他方面,例如光线追踪、网格技术和时变姿态校正。地下车辆往往缺乏足够的地面实况导航解决方案和由此产生的深海地图。在本文中,我们展示了一个包含四个独立调查的数据集,旨在使用两个现代声纳、典型的水下航行器导航传感器和高精度(水平 2 厘米,垂直 10 厘米)实时运动学 (RTK) GPS 来测试测深 SLAM 算法地面真相。此外,这些数据可用于改进和改进多波束声纳测绘的其他方面,例如光线追踪、网格技术和时变姿态校正。和高精度(水平 2 厘米,垂直 10 厘米)实时运动学 (RTK) GPS 地面实况。此外,这些数据可用于改进和改进多波束声纳测绘的其他方面,例如光线追踪、网格技术和时变姿态校正。和高精度(水平 2 厘米,垂直 10 厘米)实时运动学 (RTK) GPS 地面实况。此外,这些数据可用于改进和改进多波束声纳测绘的其他方面,例如光线追踪、网格技术和时变姿态校正。

更新日期:2021-10-11
down
wechat
bug