当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of the Effect of 3D Meniscus Geometry on Fluid Dynamics and Crystallization via In Situ Optical Microscopy-Assisted Mathematical Modeling
Advanced Materials ( IF 29.4 ) Pub Date : 2021-10-07 , DOI: 10.1002/adma.202105035
Jeong-Chan Lee 1 , Hyeji Seo 1 , Minho Lee 2 , Dongjae Kim 2 , Hyeon Seok Lee 1 , Hyunmin Park 1 , Nathaniel Ball 3 , Junhee Woo 1 , Su Yeong Kim 1 , Jaewook Nam 2 , Steve Park 1, 4
Affiliation  

Solution-based thin-film solidification is a complex process involving various transport phenomena that are intricately dependent on multiple experimental parameters. The difficulty of analyzing this process experimentally or conducting exact numerical simulation make it challenging to understand, predict, and control the solidification process. In this work, a simple and effective technique to analyze the thin-film solidification process during solution shearing, based on 3D geometrical model of the meniscus, is proposed. The 3D meniscus geometry, which changes depending on the experimental parameters, is attained using high-speed side-view and top-view in situ microscopy. Thereafter, mass and momentum transport mathematical models are applied to obtain numerical solutions of transport phenomena within the meniscus. Utilizing these results, the underlying mechanism of dendritic growth of small molecule organic semiconductor is elucidated, which has previously been unknown. The 3D meniscus modeling is particularly important for this analysis, as dendrite formation is strongly dependent on the meniscus geometry near the contact line and mass transport variation perpendicular to the coating direction. This technique enables the study of complex relationship between experimental parameters and solidification process, which is widely applicable to various materials and coating systems; whereby, better understanding of thin-film growth and device performance optimization is possible.

中文翻译:

通过原位光学显微镜辅助数学建模研究 3D 弯月面几何形状对流体动力学和结晶的影响

阐明了小分子有机半导体枝晶生长的潜在机制,这在以前是未知的。3D 弯月面建模对于该分析尤为重要,因为枝晶的形成很大程度上取决于接触线附近的弯月面几何形状和垂直于涂层方向的质量传输变化。该技术能够研究实验参数与凝固过程之间的复杂关系,广泛适用于各种材料和涂层体系;因此,可以更好地理解薄膜生长和器件性能优化。因为枝晶的形成很大程度上取决于接触线附近的弯月面几何形状和垂直于涂层方向的质量传输变化。该技术能够研究实验参数与凝固过程之间的复杂关系,广泛适用于各种材料和涂层体系;因此,可以更好地理解薄膜生长和器件性能优化。因为枝晶的形成很大程度上取决于接触线附近的弯月面几何形状和垂直于涂层方向的质量传输变化。该技术能够研究实验参数与凝固过程之间的复杂关系,广泛适用于各种材料和涂层体系;因此,可以更好地理解薄膜生长和器件性能优化。
更新日期:2021-10-07
down
wechat
bug