当前位置: X-MOL 学术J. Opt. Soc. Amer. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kilowatt power scaling of an intrinsically low Brillouin and thermo-optic Yb-doped silica fiber
Journal of the Optical Society of America B ( IF 1.9 ) Pub Date : 2021-10-05 , DOI: 10.1364/josab.434413
T. W. Hawkins 1 , P. D. Dragic 2 , N. Yu 2 , A. Flores 3 , M. Engholm 4 , J. Ballato 1
Affiliation  

The performance of optical fibers is dependent on both the fiber design and the materials from which it is made. While much of the development over the past few decades has focused on fiber geometry and microstructuring, more recent analyses have shown clear benefits of addressing parasitic nonlinearities at the origins of their light–matter interactions. Reported here are results on intrinsically low Brillouin and thermo-optic core fibers, fabricated using modified chemical vapor deposition. Specifically, fibers in the Yb-doped ${\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3} {-} {{\rm{P}}_2}{{\rm{O}}_5} {-} {{\rm{B}}_2}{{\rm{O}}_3} {-} {\rm{Si}}{{\rm{O}}_2}$ system are developed based on how each glass constituent affects the material parameters that enable both stimulated Brillouin scattering (SBS) and transverse mode instability (TMI). One fiber, developed to be very heavily doped, exhibited thermo-optic and Brillouin gain coefficients up to ${\sim}{{3}}\;{\rm{dB}}$ and 6 dB below conventional laser fibers, respectively. A second fiber, designed to approximate a commercial double-clad laser fiber, which necessitated lower doping levels, was output power scaled to over 1 kW with an efficiency over 70% and no observed photodarkening under conventional testing. Design curves for the enabling material properties that drive TMI and SBS also are provided as functions of compositions as a tool for the community to further study and develop intrinsically low-nonlinearity fiber lasers.

中文翻译:

固有低布里渊和热光掺镱石英光纤的千瓦功率缩放

光纤的性能取决于光纤设计和制造材料。虽然过去几十年的大部分发展都集中在纤维几何形状和微观结构上,但最近的分析表明,解决光-物质相互作用起源处的寄生非线性具有明显的好处。这里报告的是使用改进的化学气相沉积制造的固有低布里渊和热光芯光纤的结果。具体而言,掺镱中的光纤${\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3} {-} {{\rm{P}}_2}{ {\rm{O}}_5} {-} {{\rm{B}}_2}{{\rm{O}}_3} {-} {\rm{Si}}{{\rm{O}} _2}$系统的开发基于每种玻璃成分如何影响材料参数,从而实现受激布里渊散射 (SBS) 和横向模式不稳定性 (TMI)。一根光纤被开发为非常重掺杂,表现出高达${\sim}{{3}}\;{\rm{dB}}$ 的热光和布里渊增益系数和 6 dB,分别比传统激光光纤低。第二根光纤设计为近似商用双包层激光光纤,需要较低的掺杂水平,输出功率超过 1 kW,效率超过 70%,并且在常规测试中没有观察到光暗化。驱动 TMI 和 SBS 的使能材料特性的设计曲线也作为成分的函数提供,作为社区进一步研究和开发本质上低非线性光纤激光器的工具。
更新日期:2021-12-02
down
wechat
bug