当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tuning the phase composition in polymorphic Nb2O5 nanoplates for rapid and stable lithium ion storage
Electrochimica Acta ( IF 6.6 ) Pub Date : 2021-10-05 , DOI: 10.1016/j.electacta.2021.139368
Wanxing Zhang 1 , Peixing Shen 2 , Lizhi Qian 1 , Pengcheng Mao 1 , Mashkoor Ahmad 3 , Hongtao Chu 4 , Runguo Zheng 1, 5 , Zhiyuan Wang 1, 5 , Lu Bai 6 , Hongyu Sun 5 , Yanlong Yu 2 , Yanguo Liu 1, 5
Affiliation  

By using the intrinsic polymorphism nature of Nb2O5 material, we employ three typical Nb2O5 phases (orthorhombic (T), tetragonal (M) and monoclinic (H) phases) in a single material, and optimize the phase composition to form nanodomains, which are achieved by carefully adjusting the calcination parameters. The resulting sponge-like Nb2O5 nanoplate anodes exhibit attractive rate performance and cycle stability. Specifically, the optimized electrode shows a reversible capacity of 321 mAh g−1 at 1 C (1 C = 200 mA g−1) after 200 cycles. At a high current density of 10 C, the electrode delivers a reversible capacity of 152 mAh g−1. Long term durability tests show that the electrode performs an excellent cycling performance at a current density of 5 C over 1000 cycles with a capacity loss of 0.06 mAh g−1 per cycle. The excellent lithium storage properties are due to the unique multiple phases and nanoscale interface inside the electrode, which facilitate the storing of more ions and the rapid ion transportation during the charging/discharging process. The proposed electrode design strategy provides an alternative route to develop advanced electrodes for energy storage.



中文翻译:

调整多晶型 Nb2O5 纳米板的相组成以实现快速稳定的锂离子存储

通过利用 Nb 2 O 5材料的固有多态性,我们在单一材料中采用三种典型的 Nb 2 O 5相(正交 (T)、四方 (M) 和单斜 (H) 相),并优化相组成以形成纳米域,这是通过仔细调整煅烧参数来实现的。所得海绵状Nb 2 O 5纳米板阳极表现出有吸引力的倍率性能和循环稳定性。具体而言,优化的电极在 200 次循环后在 1 C (1 C = 200 mA g -1 ) 下显示出 321 mAh g -1的可逆容量。在 10 C 的高电流密度下,电极提供 152 mAh g 的可逆容量-1。长期耐久性测试表明,该电极在 5 C 的电流密度下在 1000 次循环中表现出优异的循环性能,每次循环的容量损失为 0.06 mAh g -1。优异的锂储存性能是由于电极内部独特的多相和纳米级界面,有利于在充电/放电过程中储存更多的离子和快速的离子传输。所提出的电极设计策略为开发用于储能的先进电极提供了另一种途径。

更新日期:2021-10-14
down
wechat
bug