当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced superconductivity and ferroelectric quantum criticality in plastically deformed strontium titanate
Nature Materials ( IF 41.2 ) Pub Date : 2021-10-04 , DOI: 10.1038/s41563-021-01102-3
S Hameed 1 , D Pelc 1, 2 , Z W Anderson 1 , A Klein 3 , R J Spieker 1 , L Yue 4 , B Das 5 , J Ramberger 5 , M Lukas 6 , Y Liu 7 , M J Krogstad 8 , R Osborn 8 , Y Li 4 , C Leighton 5 , R M Fernandes 1 , M Greven 1
Affiliation  

The properties of quantum materials are commonly tuned using experimental variables such as pressure, magnetic field and doping. Here we explore a different approach using irreversible, plastic deformation of single crystals. We show that compressive plastic deformation induces low-dimensional superconductivity well above the superconducting transition temperature (Tc) of undeformed SrTiO3, with evidence of possible superconducting correlations at temperatures two orders of magnitude above the bulk Tc. The enhanced superconductivity is correlated with the appearance of self-organized dislocation structures, as revealed by diffuse neutron and X-ray scattering. We also observe deformation-induced signatures of quantum-critical ferroelectric fluctuations and inhomogeneous ferroelectric order using Raman scattering. Our results suggest that strain surrounding the self-organized dislocation structures induces local ferroelectricity and quantum-critical dynamics that strongly influence Tc, consistent with a theory of superconductivity enhanced by soft polar fluctuations. Our results demonstrate the potential of plastic deformation and dislocation engineering for the manipulation of electronic properties of quantum materials.



中文翻译:

塑性变形钛酸锶的超导性和铁电量子临界性增强

量子材料的特性通常使用压力、磁场和掺杂等实验变量进行调整。在这里,我们探索了一种使用单晶不可逆塑性变形的不同方法。我们表明,压缩塑性变形在远高于未变形 SrTiO 3的超导转变温度 ( T c ) 的情况下诱导低维超导性,并有证据表明在比体积T c高两个数量级的温度下可能存在超导相关性. 增强的超导性与自组织位错结构的出现相关,如漫射中子和 X 射线散射所揭示的那样。我们还使用拉曼散射观察变形引起的量子临界铁电波动和不均匀铁电有序的特征。我们的结果表明,自组织位错结构周围的应变引起局部铁电性和量子临界动力学,强烈影响Tc ,这与软极性涨落增强的超导性理论一致。我们的结果证明了塑性变形和位错工程在操纵量子材料电子特性方面的潜力。

更新日期:2021-10-04
down
wechat
bug