当前位置: X-MOL 学术Soil Biol. Biochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Antibiotics and temperature interact to disrupt soil communities and nutrient cycling
Soil Biology and Biochemistry ( IF 9.7 ) Pub Date : 2021-09-29 , DOI: 10.1016/j.soilbio.2021.108437
Jane M. Lucas 1, 2 , Bronte M. Sone 1 , Dana Whitmore 1 , Michael S. Strickland 1
Affiliation  

Soils contain immense diversity and support terrestrial ecosystem functions, but they face both anthropogenic and environmental stressors. While many studies have examined the influence of individual stressors on soils, how these perturbations will interact to shape soil communities and their ability to cycle nutrients is far less resolved. Here, we hypothesized that when soils experience multiple stressors their ability to maintain connected and stable communities is disrupted, leading to shifts in C and N pools. To test this, we maintained soils across three temperatures representative of seasonal variability (15, 20 and 30 °C) and introduced high or low doses of the common livestock antibiotic Monensin. We monitored respiration and examined changes to microbial communities through amplicon sequencing and network analyses. We also examined soil C and N pools to understand how temperature and antibiotics shape ecosystem function. We found that antibiotics and rising soil temperatures interacted to disrupt bacterial assemblages and network structure, allowing for a rise in fungal dominance and change in soil nutrient stoichiometry. Antibiotics alone decreased bacterial diversity, abundance, total extractable N, and microbial carbon use efficiency, while increasing bioavailable C. Higher temperatures independently homogenized fungal community composition, decreased dissolved organic C and increased soil respiration rates. These results emphasize that as soils encounter multiple stressors, ecosystem efficiency, stability and resilience may be diminished.



中文翻译:

抗生素和温度相互作用破坏土壤群落和养分循环

土壤包含巨大的多样性并支持陆地生态系统功能,但它们面临着人为压力和环境压力。虽然许多研究已经研究了个体压力源对土壤的影响,但这些扰动将如何相互作用以塑造土壤群落以及它们循环养分的能力远未得到解决。在这里,我们假设当土壤经历多重压力时,它们维持连接和稳定社区的能力被破坏,导致 C 和 N 池发生变化。为了测试这一点,我们在代表季节性变化(15、20 和 30 °C)的三个温度范围内保持土壤,并引入高剂量或低剂量的常见牲畜抗生素莫能菌素。我们通过扩增子测序和网络分析监测呼吸并检查微生物群落的变化。我们还检查了土壤 C 和 N 池,以了解温度和抗生素如何塑造生态系统功能。我们发现抗生素和不断上升的土壤温度相互作用破坏了细菌组合和网络结构,从而导致真菌优势的增加和土壤养分化学计量的变化。单独使用抗生素会降低细菌多样性、丰度、总可提取 N 和微生物碳利用效率,同时增加生物可利用 C。更高的温度独立地使真菌群落组成均质化,减少溶解的有机 C 并增加土壤呼吸速率。这些结果强调,当土壤遇到多重压力时,生态系统的效率、稳定性和恢复力可能会降低。我们发现抗生素和不断上升的土壤温度相互作用破坏了细菌组合和网络结构,从而导致真菌优势的增加和土壤养分化学计量的变化。单独使用抗生素会降低细菌多样性、丰度、总可提取 N 和微生物碳利用效率,同时增加生物可利用 C。更高的温度独立地使真菌群落组成均质化,减少溶解的有机 C 并增加土壤呼吸速率。这些结果强调,当土壤遇到多重压力时,生态系统的效率、稳定性和恢复力可能会降低。我们发现抗生素和不断上升的土壤温度相互作用破坏了细菌组合和网络结构,从而导致真菌优势的增加和土壤养分化学计量的变化。单独使用抗生素会降低细菌多样性、丰度、总可提取 N 和微生物碳利用效率,同时增加生物可利用 C。更高的温度独立地使真菌群落组成均质化,减少溶解的有机 C 并增加土壤呼吸速率。这些结果强调,当土壤遇到多重压力时,生态系统的效率、稳定性和恢复力可能会降低。丰度、总可提取 N 和微生物碳利用效率,同时增加生物可利用 C。更高的温度独立地使真菌群落组成均质化,减少溶解的有机 C 并增加土壤呼吸速率。这些结果强调,当土壤遇到多重压力时,生态系统的效率、稳定性和恢复力可能会降低。丰度、总可提取 N 和微生物碳利用效率,同时增加生物可利用 C。更高的温度独立地使真菌群落组成均质化,减少溶解的有机 C 并增加土壤呼吸速率。这些结果强调,当土壤遇到多重压力时,生态系统的效率、稳定性和恢复力可能会降低。

更新日期:2021-10-02
down
wechat
bug