当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced interfacial kinetics and fast Na+ conduction of hybrid solid polymer electrolytes for all-solid-state batteries
Energy Storage Materials ( IF 20.4 ) Pub Date : 2021-09-27 , DOI: 10.1016/j.ensm.2021.09.031
Chengzhao Luo 1 , Qinyi Li 1 , Dongyang Shen 1 , Ronghong Zheng 1 , Dong Huang 1 , Yu Chen 1, 2
Affiliation  

All-solid-state batteries suffer from drastic interfacial reactions between the solid electrolyte and electrode, which restricts the performance of the full cell. Herein, a hybrid solid polymer electrolyte with high ionic conductivity and stability has been fabricated by in-situ polymerization of poly(ethylene glycol) diacrylate (PEGDA) on glass fiber matrix, followed by polyethylene glycol (PEG) infiltration. Such hybrid electrolyte, namely GF@PEGDA@PEG (GFPP), is featured with an interconnecting ionic conducting network and demonstrates high ionic conductivities of 0.8 × 10−4 S cm−1 at 20 °C and 4.5 × 10−3 S cm−1 at 60 °C. The ex-situ Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) of Na/GFPP/Na symmetrical battery proves the excellent stability of GFPP. Furthermore, in-situ Electrochemical Impedance Spectroscopy (EIS) analysis and in-situ Raman spectra confirm the enhanced interfacial dynamics achieved by GFPP, being conducive to the intercalation/deintercalation of Na+. Meanwhile, the optical microscope and X-ray photoelectron spectroscopy (XPS) demonstrate the formation of a stable SEI film and limited interfacial side reaction by the incorporation of GFPP. Full sodium metal batteries based on GFPP have been assembled and demonstrated satisfactory electrochemical performance. After being tested for 1100 cycles at a rate of 0.3 C, the Coulombic efficiency of Na3V2(PO4)3 (NVP) /GFPP/Na full cell remains at almost 99%, with a capacity retention of 91.4%.



中文翻译:

用于全固态电池的混合固体聚合物电解质的增强界面动力学和快速 Na+ 传导

全固态电池存在固体电解质和电极之间剧烈的界面反应,这限制了全电池的性能。在此,通过聚(乙二醇)二丙烯酸酯(PEGDA)在玻璃纤维基质上的原位聚合,然后聚乙二醇(PEG)渗透,制备了具有高离子电导率和稳定性的混合固体聚合物电解质。这种混合电解质,即GF@PEGDA@PEG (GFPP),具有互连的离子导电网络,并在20°C和4.5×10 -3 S cm - 下显示出0.8 × 10 -4 S cm -1 的高离子电导率1在 60 °C。该易地Na/GFPP/Na对称电池的衰减全反射-傅立叶变换红外光谱(ATR-FTIR)证明了GFPP的优异稳定性。此外,原位电化学阻抗谱 (EIS) 分析和原位拉曼光谱证实了 GFPP 增强的界面动力学,有利于 Na +的嵌入/脱嵌. 同时,光学显微镜和 X 射线光电子能谱 (XPS) 证明了通过掺入 GFPP 形成稳定的 SEI 膜和有限的界面副反应。已经组装了基于GFPP的全钠金属电池并表现出令人满意的电化学性能。Na 3 V 2 (PO 4 ) 3 (NVP) /GFPP/Na全电池经过1100次循环1100次循环测试后,其库仑效率几乎保持在99%,容量保持率为91.4%。

更新日期:2021-10-02
down
wechat
bug