当前位置: X-MOL 学术J. Hazard. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electro-activation of peroxymonosulfate by a graphene oxide/iron oxide nanoparticle-doped Ti4O7 ceramic membrane: mechanism of singlet oxygen generation in the removal of 1,4-dioxane
Journal of Hazardous Materials ( IF 13.6 ) Pub Date : 2021-09-26 , DOI: 10.1016/j.jhazmat.2021.127342
Wei Li 1 , Runlin Xiao 1 , Hui Lin 1 , Kui Yang 1 , Wei Li 1 , Kuanchang He 1 , Li-Hui Yang 1 , Mengjie Pu 1 , Mengyun Li 1 , Sihao Lv 1
Affiliation  

Electro-activation of peroxymonosulfate (PMS) has been widely investigated for the degradation of organic pollutants. Herein, we employ graphene oxide (GO)/Fe3O4 nanoparticles (NPs) doped into a Ti4O7 reactive electrochemical membrane through strong chemical bonding as the cathode to activate PMS for the degradation of 1,4-dioxane (1,4-D). The strong chemical interaction between GO, Fe3O4-NPs, and Ti4O7 via Fe–O---GO---O–Ti bonds enhances the electron-transfer efficiency and provides catalytically active sites that boost the electro-activation of PMS. As a result, the 1,4-D oxidation rate of the GO/Fe3O4-NPs@Ti4O7 REM cathode is ~3 times higher (7.21 × 10-3 min-1) than those of other Ti4O7 ceramic membranes, and 1O2 plays a key role (59.9%) in the degradation of 1,4-D. The 1O2 generation mechanism in the electro-activation process of PMS was systematically investigated, and we claimed that 1O2 is mainly generated from the precursors H2O2 and O2•–/HO2 rather than by O2 or OH, as has been reported in previous studies. A flow-through mode test in the PMS electro-activation system is firstly reported, and the 1,4-D decay efficiency is 7.1 times higher than that obtained by a flow-by mode, showing that an improved PMS mass transfer efficiency enhances the conversion to reactive oxygen species.



中文翻译:

氧化石墨烯/氧化铁纳米颗粒掺杂的 Ti4O7 陶瓷膜对过氧单硫酸盐的电活化:去除 1,4-二恶烷中产生单线态氧的机制

过氧单硫酸盐 (PMS) 的电活化已被广泛研究用于降解有机污染物。在此,我们采用通过强化学键掺杂到 Ti 4 O 7反应性电化学膜中的氧化石墨烯 (GO)/Fe 3 O 4纳米粒子 (NPs)作为阴极来激活 PMS 以降解 1,4-二氧六环 (1, 4-D)。GO、Fe 3 O 4 -NPs 和 Ti 4 O 7 之间通过 Fe-O---GO---O-Ti 键的强化学相互作用提高了电子转移效率并提供了催化活性位点,促进了电激活 PMS。因此,GO/Fe 3 O的 1,4-D 氧化速率4 -NPs@Ti 4 O 7 REM 阴极比其他 Ti 4 O 7陶瓷膜高约 3 倍(7.21 × 10 -3 min -1),并且1 O 2在此过程中起着关键作用(59.9%) 1,4-D 的降解。的1所Ò 2在PMS的电活化过程产生机构被系统地研究,我们宣称1 Ò 2主要由前体H上产生2 ö 2和O 2 • - / HO 2 而不是被O 2 OH,如先前研究中所报告。首次报道了在 PMS 电活化系统中的流通模式测试,1,4-D 衰减效率比流通模式高 7.1 倍,表明改进的 PMS 传质效率提高了转化为活性氧。

更新日期:2021-10-09
down
wechat
bug