当前位置: X-MOL 学术Int. J. Automot. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lightweight Design of an Automotive Battery-Pack Enclosure via Advanced High-Strength Steels and Size Optimization
International Journal of Automotive Technology ( IF 1.6 ) Pub Date : 2021-09-26 , DOI: 10.1007/s12239-021-0112-5
Yongjun Pan 1 , Yue Xiong 1 , Lei Wu 2 , Keshan Diao 2 , Wei Guo 3
Affiliation  

The battery packs are crucial components of electric vehicles and may severely affect the continue voyage course and vehicle safety. Therefore, design optimization of the battery-pack enclosure (BPE) is critical for enhanced mechanical and crashwrothiness performances. In this study, a lightweight design of an automotive BPE under the loading conditions is presented based on the advanced high-strength steels (AHSSs) and size optimization. A numerical analysis procedure is also introduced for the lightweight design. First of all, a nonlinear finite element (FE) BPE model was established and validated through the modal test. Secondly, the random vibration simulation was performed based on the sensitivity analysis to initially determine the AHSSs and thickness for the components of the BPE. Next, the material and thickness were determined by the fixed-frequency vibration analysis. Moreover, the mechanical shock and fatigue life were analyzed numerically. Finally, the crashworthiness of the optimized BPE model was verified by crash and crush simulations. The results show that the optimized BPE structure has a 10.41 % lightweight gain, while assuring enhanced dynamic performances. The introduced numerical procedure could be used to quickly determine the material and thickness of each component of BPE. The design optimization process was found beneficial to reduce the number of physical tests and product development cost and shorten product development cycles.



中文翻译:

通过先进的高强度钢和尺寸优化实现汽车电池组外壳的轻量化设计

电池组是电动汽车的关键部件,可能会严重影响续航过程和车辆安全。因此,电池组外壳 (BPE) 的设计优化对于增强机械性能和防撞性能至关重要。在这项研究中,基于先进的高强度钢 (AHSS) 和尺寸优化,提出了在加载条件下汽车 BPE 的轻量化设计。还介绍了轻量化设计的数值分析程序。首先,建立非线性有限元(FE)BPE模型并通过模态试验进行验证。其次,基于灵敏度分析进行随机振动模拟,初步确定 BPE 组件的 AHSS 和厚度。下一个,材料和厚度由定频振动分析确定。此外,对机械冲击和疲劳寿命进行了数值分析。最后,通过碰撞和挤压模拟验证了优化的 BPE 模型的耐撞性。结果表明,优化后的 BPE 结构具有 10.41% 的轻量化增益,同时确保增强的动态性能。引入的数值程序可用于快速确定 BPE 每个组件的材料和厚度。发现设计优化过程有利于减少物理测试次数和产品开发成本,并缩短产品开发周期。通过碰撞和挤压模拟验证了优化的 BPE 模型的耐撞性。结果表明,优化后的 BPE 结构具有 10.41% 的轻量化增益,同时确保增强的动态性能。引入的数值程序可用于快速确定 BPE 每个组件的材料和厚度。发现设计优化过程有利于减少物理测试次数和产品开发成本,并缩短产品开发周期。通过碰撞和挤压模拟验证了优化的 BPE 模型的耐撞性。结果表明,优化后的 BPE 结构具有 10.41% 的轻量化增益,同时确保增强的动态性能。引入的数值程序可用于快速确定 BPE 每个组件的材料和厚度。发现设计优化过程有利于减少物理测试次数和产品开发成本,并缩短产品开发周期。

更新日期:2021-09-27
down
wechat
bug