当前位置: X-MOL 学术J. Build. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A quantitative metric for the indoor environment radiative field asymmetry obtained by means of numerical simulation of the radiative field structure
Journal of Building Engineering ( IF 6.4 ) Pub Date : 2021-09-25 , DOI: 10.1016/j.jobe.2021.103345
Bogdan Diaconu 1 , Mihai Cruceru 1 , Lucica Anghelescu 1
Affiliation  

Radiative exchange in the indoor environment contributes significantly to the thermal comfort sensation reported by human subjects. The radiative exchange can have a strong directional character, depending on the temperature and size of various surfaces such as glazed areas, radiant panels, etc. Radiative asymmetry is known to cause significant thermal discomfort. The paper proposes a numerical simulation approach to characterize the asymmetry of the radiative field in a rectangular section enclosure. An enclosure with fixed dimensions was considered and the number and position of glazed areas were varied. Three shapes of virtual sensor were considered: rectangular prism, cylinder and sphere. The total heat flux exchanged by the sensor with the surfaces of the enclosure was determined. By varying the position of the sensor in the enclosure, a set of heat flux values associated to each sensor position was generated (a radiative field). A measure of radiative field asymmetry (radiative asymmetry coefficient) is proposed in this paper as the ratio between maximum and minimum values of the heat flux density. It was found that the most comprehensive characterization of the radiative field asymmetry can be obtained by employing a spherical sensor. The spherical sensor allows a two-fold definition of the radiative asymmetry coefficient with one value in the horizontal plane and another value in a vertical plane. The novel metric proposed here offers a more complete characterization of the radiative field than the conventional Radiant Temperature Asymmetry.



中文翻译:

通过辐射场结构的数值模拟获得的室内环境辐射场不对称性的量化度量

室内环境中的辐射交换对人类受试者报告的热舒适感有显着影响。辐射交换可能具有很强的方向性,这取决于各种表面(例如玻璃区域、辐射板等)的温度和大小。众所周知,辐射不对称会导致明显的热不适。本文提出了一种数值模拟方法来表征矩形截面外壳中辐射场的不对称性。考虑了固定尺寸的外壳,并改变了玻璃区域的数量和位置。考虑了三种形状的虚拟传感器:长方体、圆柱体和球体。确定了传感器与外壳表面交换的总热通量。通过改变传感器在外壳中的位置,生成一组与每个传感器位置相关的热通量值(辐射场)。本文提出了一种辐射场不对称性(辐射不对称系数)的量度,即热流密度最大值与最小值之比。发现通过使用球形传感器可以获得辐射场不对称性的最全面表征。球形传感器允许对辐射不对称系数进行双重定义,一个值在水平面,另一个值在垂直面。与传统的辐射温度不对称相比,这里提出的新度量提供了更完整的辐射场表征。本文提出了一种辐射场不对称性(辐射不对称系数)的量度,即热流密度最大值与最小值之比。发现通过使用球形传感器可以获得辐射场不对称性的最全面表征。球形传感器允许对辐射不对称系数进行双重定义,一个值在水平面,另一个值在垂直面。与传统的辐射温度不对称性相比,这里提出的新度量提供了更完整的辐射场表征。本文提出了一种辐射场不对称性(辐射不对称系数)的量度,即热流密度最大值与最小值之比。发现通过使用球形传感器可以获得辐射场不对称性的最全面表征。球形传感器允许对辐射不对称系数进行双重定义,一个值在水平面,另一个值在垂直面。与传统的辐射温度不对称相比,这里提出的新度量提供了更完整的辐射场表征。发现通过使用球形传感器可以获得辐射场不对称性的最全面表征。球形传感器允许对辐射不对称系数进行双重定义,一个值在水平面,另一个值在垂直面。与传统的辐射温度不对称相比,这里提出的新度量提供了更完整的辐射场表征。发现通过使用球形传感器可以获得辐射场不对称性的最全面表征。球形传感器允许对辐射不对称系数进行双重定义,一个值在水平面,另一个值在垂直面。与传统的辐射温度不对称相比,这里提出的新度量提供了更完整的辐射场表征。

更新日期:2021-09-27
down
wechat
bug