当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemically synthesized SnO2 with tunable oxygen vacancies for efficient electrocatalytic nitrogen fixation
Nanoscale ( IF 6.7 ) Pub Date : 2021-08-19 , DOI: 10.1039/d1nr04621g
Xiaojia He 1 , Haoran Guo 2 , Tianhao Liao 1 , Yi Pu 1 , Long Lai 1 , Zihao Wang 1 , Hui Tang 1
Affiliation  

Electrochemical nitrogen reduction reaction (NRR) driven by a renewable energy source offers a sustainable and environmentally benign route to produce ammonia (NH3), but it is highly dependent on efficient and specific catalysts to reduce the high reaction barrier and improve the selectivity. Defect engineering is extensively used to regulate the surface properties of materials to improve their catalytic performance. Herein we synthesized SnO2 with different oxygen vacancy concentrations by a controllable electrochemical method for electrocatalytic nitrogen (N2) fixation. The prepared SnO2 was used as an electrocatalyst and exhibited excellent NRR performance with an optimal NH3 yield rate of 25.27 μg h−1 mgcat.−1 and faradaic efficiency of 11.48% at −0.6 V (vs. the reversible hydrogen electrode) in 0.1 M Na2SO4. Oxygen vacancies provide more active sites and greater electron transfer ability on the catalyst surface to facilitate N2 adsorption and activation. The electrocatalytic NRR performance of SnO2 was enhanced with the increase in oxygen vacancy concentration. The density functional theory calculations indicate that the oxygen vacancies in SnO2 promote the electrocatalytic NRR performance by increasing the number of valence electrons of Sn and decreasing the energy barrier of the potential-determining step, thus promoting the activation of the N–N bond to further achieve efficient N2 fixation.

中文翻译:

电化学合成的具有可调氧空位的 SnO2 用于高效电催化固氮

由可再生能源驱动的电化学氮还原反应 (NRR) 提供了一条可持续且环境友好的生产氨 (NH 3 ) 的途径,但它高度依赖于高效和特定的催化剂来降低高反应势垒并提高选择性。缺陷工程被广泛用于调节材料的表面性质以提高其催化性能。在此,我们通过用于电催化固氮 (N 2 )的可控电化学方法合成了具有不同氧空位浓度的SnO 2。制备的 SnO 2用作电催化剂并表现出优异的 NRR 性能,最佳 NH 3产率为 25.27 μg·h−1毫克猫。-1和 11.48% 的法拉第效率在 -0.6 V(对于可逆氢电极)在 0.1 M Na 2 SO 4 中。氧空位在催化剂表面提供更多的活性位点和更大的电子转移能力,以促进N 2吸附和活化。SnO 2的电催化NRR性能随着氧空位浓度的增加而增强。密度泛函理论计算表明,SnO 2中的氧空位通过增加Sn的价电子数和降低电位决定步骤的能垒来提高电催化NRR性能,从而促进N-N键的活化以进一步实现有效的N 2固定。
更新日期:2021-09-27
down
wechat
bug