当前位置: X-MOL 学术Nanotechnology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Employing synergetic effect of ZnSe quantum dots and layered Ni(OH)2 to boost the performance of lithium–sulfur cathodes
Nanotechnology ( IF 3.5 ) Pub Date : 2021-10-14 , DOI: 10.1088/1361-6528/ac2982
Chenyuan Zhao 1 , Yuxiang Zhou 1 , Tianyu Shi 1 , Desong Guo 1 , Haihong Yin 1 , Changqing Song 1 , Lin Qin 1 , Zhiliang Wang 1 , Haibao Shao 1 , Ke Yu 2
Affiliation  

The low sulfur utilization, cycling instability, and sluggish kinetics are the critical obstructions to practical applications of lithium–sulfur batteries (LSBs). Constructing sulfur hosts with high conductivity, suppressed shuttle effect, and rapid kinetics is essential for their practical application in LSBs. Here, we synthetically utilized the merits of ZnSe quantum dots (QDs) and layered Ni(OH)2 to boost the performance of LSBs. A novel core–shell ZnSe-CNTs/S@Ni(OH)2 was constructed using the ZnSe-CNTs network as framework to load sulfur and following with Ni(OH)2 encapsulation. The CNT network decorated with ZnSe QDs not only serves as a conductive framework providing fast electron/ion transfer channels, but also limits polysulfide diffusion physically and chemically. Layered Ni(OH)2, the wrinkled encapsulation, not only permits fast electron/ion transfer, but also buffers the expansion, confines active materials, and limits the polysulfide dissolution chemically. When used as a cathode, ZnSe-CNTs/S@Ni(OH)2 presents enhanced electrochemistry performance compared with ZnSe-CNTs/S and CNTs/S. The average specific capacity decreases from 1021.9 mAh g−1 at 0.2 C to 665.0 mAh g−1 at 2 C, showing rate capacity much higher than ZnSe-CNTs/S and CNTs/S. After 150 cycles, the capacity at 0.5 C slowly reduces from 926.7 to 789.0 mAh g−1, showing high retention of 85.1%. Therefore, our investigation provides a new strategy to construct a promising sulfur cathode for LSBs.



中文翻译:

利用ZnSe量子点和层状Ni(OH)2的协同效应来提高锂硫正极的性能

硫利用率低、循环不稳定性和缓慢的动力学是锂硫电池(LSB)实际应用的关键障碍。构建具有高电导率、抑制穿梭效应和快速动力学的硫主体对于它们在 LSB 中的实际应用至关重要。在这里,我们综合利用 ZnSe 量子点 (QD) 和层状 Ni(OH) 2的优点来提高 LSB 的性能。一种新型的核-壳ZnSe基的CNT / S @的Ni(OH)2是使用ZnSe基的CNT网络框架,以负载硫和用Ni(OH)以下构造2封装。用 ZnSe 量子点装饰的 CNT 网络不仅可以作为提供快速电子/离子传输通道的导电框架,而且还可以在物理和化学上限制多硫化物的扩散。层状Ni(OH) 2,皱纹封装,不仅允许快速电子/离子转移,而且缓冲膨胀,限制活性材料,并在化学上限制多硫化物溶解。当用作阴极时,与 ZnSe-CNTs/S 和 CNTs/S 相比,ZnSe-CNTs/S@Ni(OH) 2表现出增强的电化学性能。平均比容量从1021.9毫安克降低-1在0.2℃至665.0毫安克-1在 2 C,显示出远高于 ZnSe-CNTs/S 和 CNTs/S 的倍率容量。150 次循环后,0.5 C 下的容量从 926.7 缓慢降低至 789.0 mAh g -1,显示出 85.1% 的高保留率。因此,我们的研究为构建 LSB 的有前途的硫正极提供了一种新策略。

更新日期:2021-10-14
down
wechat
bug