当前位置: X-MOL 学术ACS Earth Space Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulations of Dissolution of Initially Flat Calcite Surfaces: Retreat Velocity Control and Surface Roughness Scaling
ACS Earth and Space Chemistry ( IF 3.4 ) Pub Date : 2021-09-23 , DOI: 10.1021/acsearthspacechem.1c00153
Ismael S. S. Carrasco 1, 2 , Emanuel Antunes Machado 3 , Fábio D. A. Aarão Reis 1, 3
Affiliation  

The far-from-equilibrium alkaline dissolution of initially flat and defect-free calcite surfaces is modeled with kinetic Monte Carlo simulations of site detachment from a Kossel crystal and with scaling approaches. The surface retreat velocity is strongly dependent on the detachment rate of the highest coordination sites, which represent molecules in the middle of (101̅4) terraces. The comparison with a recent velocity estimate from digital holographic microscopy predicts the removal rate of those molecules between 2 × 10–7 and 4 × 10–6 s–1 at room temperature, which improves a previous estimate from a grain dissolution model. The activation energy for this molecular-scale process is estimated as 92 ± 6 kJ/mol (assuming the same prefactor ∼3 × 1010 s–1 of kink and step sites). The areal density of nonterrace sites (mostly steps and kinks) is also related to that removal rate, so we propose that the measurement of this density may provide independent estimates of the above quantities. Arrhenius plots of the retreat velocities obtained in high-temperature simulations predict the (macroscopic) activation energy of 69 ± 4 kJ/mol for dissolution of smooth surfaces. We also show that the scaling of the surface roughness in time and size is the same as in the Kardar–Parisi–Zhang (KPZ) equation of kinetic roughening. However, room-temperature roughening of initially smooth calcite surfaces is so slow that it is unlikely to be observed in typical experimental times and the alkaline conditions modeled here. Since the rates in acidic media are larger and arguing that the microscopic symmetries of the molecule detachment processes should be preserved, we suggest the investigation of KPZ scaling under those conditions.

中文翻译:

初始平坦方解石表面溶解的模拟:后退速度控制和表面粗糙度缩放

最初平坦且无缺陷的方解石表面的远离平衡的碱性溶解是用动力学蒙特卡罗模拟从科塞尔晶体和缩放方法模拟的位点分离。表面后退速度强烈依赖于最高配位点的脱离率,这些配位点代表(101̅4)阶地中间的分子。与最近的数字全息显微镜速度估计值的比较预测,这些分子在室温下的去除率介于 2 × 10 –7和 4 × 10 –6 s –1之间,这改进了先前根据颗粒溶解模型的估计值。该分子级过程的活化能估计为 92 ± 6 kJ/mol(假设相同的前因数 ∼3 × 1010–1扭结和步骤站点)。非梯田场地(主要是台阶和扭结)的面积密度也与该去除率有关,因此我们建议对该密度的测量可以提供对上述数量的独立估计。在高温模拟中获得的后退速度的阿伦尼乌斯图预测(宏观)活化能为 69 ± 4 kJ/mol 的光滑表面溶解。我们还表明,表面粗糙度在时间和尺寸上的缩放与动力学粗糙化的 Kardar-Parisi-Zhang (KPZ) 方程中的相同。然而,最初光滑方解石表面的室温粗糙化非常缓慢,以至于在典型的实验时间和此处模拟的碱性条件下不太可能观察到。
更新日期:2021-10-22
down
wechat
bug