当前位置: X-MOL 学术arXiv.cs.ET › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programming and Training Rate-Independent Chemical Reaction Networks
arXiv - CS - Emerging Technologies Pub Date : 2021-09-20 , DOI: arxiv-2109.11422
Marko Vasic, Cameron Chalk, Austin Luchsinger, Sarfraz Khurshid, David Soloveichik

Embedding computation in biochemical environments incompatible with traditional electronics is expected to have wide-ranging impact in synthetic biology, medicine, nanofabrication and other fields. Natural biochemical systems are typically modeled by chemical reaction networks (CRNs), and CRNs can be used as a specification language for synthetic chemical computation. In this paper, we identify a class of CRNs called non-competitive (NC) whose equilibria are absolutely robust to reaction rates and kinetic rate law, because their behavior is captured solely by their stoichiometric structure. Unlike prior work on rate-independent CRNs, checking non-competition and using it as a design criterion is easy and promises robust output. We also present a technique to program NC-CRNs using well-founded deep learning methods, showing a translation procedure from rectified linear unit (ReLU) neural networks to NC-CRNs. In the case of binary weight ReLU networks, our translation procedure is surprisingly tight in the sense that a single bimolecular reaction corresponds to a single ReLU node and vice versa. This compactness argues that neural networks may be a fitting paradigm for programming rate-independent chemical computation. As proof of principle, we demonstrate our scheme with numerical simulations of CRNs translated from neural networks trained on traditional machine learning datasets (IRIS and MNIST), as well as tasks better aligned with potential biological applications including virus detection and spatial pattern formation.

中文翻译:

编程和训练速率无关的化学反应网络

在与传统电子学不兼容的生化环境中嵌入计算有望在合成生物学、医学、纳米制造等领域产生广泛的影响。自然生化系统通常由化学反应网络 (CRN) 建模,CRN 可用作合成化学计算的规范语言。在本文中,我们确定了一类称为非竞争性 (NC) 的 CRN,其平衡对反应速率和动力学速率定律绝对稳健,因为它们的行为仅由其化学计量结构捕获。与之前在与速率无关的 CRN 上的工作不同,检查非竞争性并将其用作设计标准很容易,并且可以保证稳健的输出。我们还提出了一种使用成熟的深度学习方法来编程 NC-CRN 的技术,显示了从整流线性单元 (ReLU) 神经网络到 NC-CRN 的转换过程。在二进制权重 ReLU 网络的情况下,我们的翻译过程非常紧凑,因为单个双分子反应对应于单个 ReLU 节点,反之亦然。这种紧凑性表明,神经网络可能是编程与速率无关的化学计算的合适范例。作为原理证明,我们通过从在传统机器学习数据集(IRIS 和 MNIST)上训练的神经网络转换的 CRN 的数值模拟,以及与潜在生物应用(包括病毒检测和空间模式形成)更好地匹配的任务来演示我们的方案。我们的翻译过程非常紧凑,因为单个双分子反应对应单个 ReLU 节点,反之亦然。这种紧凑性表明,神经网络可能是编程与速率无关的化学计算的合适范例。作为原理证明,我们通过从在传统机器学习数据集(IRIS 和 MNIST)上训练的神经网络转换的 CRN 的数值模拟,以及与潜在生物应用(包括病毒检测和空间模式形成)更好地匹配的任务来演示我们的方案。我们的翻译过程非常紧凑,因为单个双分子反应对应单个 ReLU 节点,反之亦然。这种紧凑性表明,神经网络可能是编程与速率无关的化学计算的合适范例。作为原理证明,我们通过从在传统机器学习数据集(IRIS 和 MNIST)上训练的神经网络转换的 CRN 的数值模拟,以及与潜在生物应用(包括病毒检测和空间模式形成)更好地匹配的任务来演示我们的方案。
更新日期:2021-09-24
down
wechat
bug