当前位置: X-MOL 学术Opt. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on the difference in exciton generation processes for a single host and exciplex-type co-host
Optics Letters ( IF 3.6 ) Pub Date : 2021-09-27 , DOI: 10.1364/ol.439516
huiwen xu , jinyu lin , Xinyan Jiang , yu jin , Zhili LIN , Xining Zhang , Xiaoyan Li , z j wu , huishan yang

We distinctly reveal the difference in the exciton generation processes in phosphorescent organic light-emitting devices with an exciplex-type co-host and a single host. Excitons in the co-host consisting of 4,4,4-tris(N-carbazolyl)-triphenylamine and 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene are created via efficient energy transfer from the exciplex to the phosphorescent dopant. In contrast, excitons in the single host of 4,4,4-tris(N-carbazolyl)-triphenylamine are formed by the combination of holes and electrons trapped by the phosphorescent dopants. The optimized device utilizing the co-host system exhibits highly superior performance relative to the single-host device. The maximum external quantum efficiency and maximum luminance are 14.88% and ${\text{90,700}}\;{\rm{cd}}/{{\rm{m}}^2}$ for the co-host device, being 1.6 times and 3.6 times the maximum external efficiency and maximum luminance for the single-host device, respectively. Significantly, the critical current density, evaluating the device efficiency roll-off characteristic, is as high as ${327.8}\;{\rm{mA}}/{{\rm{cm}}^2}$, which is highly superior to ${120.8}\;{\rm{mA}}/{{\rm{cm}}^2}$ for the single-host device, indicating the notable alleviation in efficiency roll-off for the co-host device. The significant improvement in device performance is attributed to eliminating the exciton quenching resulting from the captured holes and the efficient energy transfer from the exciplex-type co-host to the phosphorescent emitter incurred by the reverse intersystem crossing process.

中文翻译:

单宿主与激复合体型共宿主激子产生过程的差异研究

我们清楚地揭示了具有激基复合型共主体和单一主体的磷光有机发光器件中激子生成过程的差异。由 4,4,4-三(N-咔唑基)-三苯胺和 1,3,5-三(N-苯基苯并咪唑-2-基)苯组成的共主体中的激子是通过从激基复合物到磷光掺杂剂。相比之下,4,4,4-三(N-咔唑基)-三苯胺的单一主体中的激子是由磷光掺杂剂捕获的空穴和电子的组合形成的。与单主机设备相比,使用共同主机系统的优化设备表现出非常优越的性能。最大外量子效率和最大亮度为14.88%和${\text{90,700}}\;{\rm{cd}}/{{\rm{m}}^2}$对于共同主机设备,分别是单主机设备的最大外部效率和最大亮度的 1.6 倍和 3.6 倍。值得注意的是,评估器件效率滚降特性的临界电流密度高达${327.8}\;{\rm{mA}}/{{\rm{cm}}^2}$,这是高度优于${120.8}\;{\rm{mA}}/{{\rm{cm}}^2}$对于单主机设备,表明协同主机设备的效率滚降显着降低. 器件性能的显着改善归因于消除了由捕获的空穴引起的激子猝灭以及由反向系统间交叉过程引起的从激复合型共主体到磷光发射体的有效能量转移。
更新日期:2021-10-02
down
wechat
bug