当前位置: X-MOL 学术J. Exp. Bot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dissecting the metabolic reprogramming of maize root under nitrogen-deficient stress conditions
Journal of Experimental Botany ( IF 6.9 ) Pub Date : 2021-09-21 , DOI: 10.1093/jxb/erab435
Niaz Bahar Chowdhury 1 , Wheaton L Schroeder 1 , Debolina Sarkar 2 , Nardjis Amiour 3 , Isabelle Quilleré 3 , Bertrand Hirel 3 , Costas D Maranas 2 , Rajib Saha 1, 4
Affiliation  

The growth and development of maize (Zea mays L.) largely depends on its nutrient uptake through the root. Hence, studying its growth, response, and associated metabolic reprogramming to stress conditions is becoming an important research direction. A genome-scale metabolic model (GSM) for the maize root was developed to study its metabolic reprogramming under nitrogen stress conditions. The model was reconstructed based on the available information from KEGG, UniProt, and MaizeCyc. Transcriptomics data derived from the roots of hydroponically grown maize plants were used to incorporate regulatory constraints in the model and simulate nitrogen-non-limiting (N+) and nitrogen-deficient (N−) condition. Model-predicted flux-sum variability analysis achieved 70% accuracy compared with the experimental change of metabolite levels. In addition to predicting important metabolic reprogramming in central carbon, fatty acid, amino acid, and other secondary metabolism, maize root GSM predicted several metabolites (l-methionine, l-asparagine, l-lysine, cholesterol, and l-pipecolate) playing a regulatory role in the root biomass growth. Furthermore, this study revealed eight phosphatidylcholine and phosphatidylglycerol metabolites which, even though not coupled with biomass production, played a key role in the increased biomass production under N-deficient conditions. Overall, the omics-integrated GSM provides a promising tool to facilitate stress condition analysis for maize root and engineer better stress-tolerant maize genotypes.

中文翻译:

剖析缺氮胁迫条件下玉米根系的代谢重编程

玉米 (Zea mays L.) 的生长和发育很大程度上取决于其通过根部吸收的养分。因此,研究其在应激条件下的生长、反应和相关的代谢重编程正在成为一个重要的研究方向。开发了玉米根的基因组规模代谢模型 (GSM),以研究其在氮胁迫条件下的代谢重编程。该模型是根据来自 KEGG、UniProt 和 MaizeCyc 的可用信息重建的。源自水培玉米植物根部的转录组学数据用于在模型中纳入监管约束并模拟氮非限制性 (N+) 和氮缺乏 (N-) 条件。与代谢物水平的实验变化相比,模型预测的通量和变异性分析达到了 70% 的准确度。除了预测中心碳、脂肪酸、氨基酸和其他次生代谢中重要的代谢重编程外,玉米根 GSM 还预测了几种代谢物(L-蛋氨酸、L-天冬酰胺、L-赖氨酸、胆固醇和 L-哌啶)根生物量生长的调节作用。此外,这项研究揭示了八种磷脂酰胆碱和磷脂酰甘油代谢物,尽管它们与生物质生产不相结合,但它们在缺氮条件下增加的生物质生产中发挥了关键作用。总体而言,组学整合的 GSM 为促进玉米根的胁迫条件分析和设计更好的耐胁迫玉米基因型提供了一种有前途的工具。玉米根 GSM 预测几种代谢物(L-蛋氨酸、L-天冬酰胺、L-赖氨酸、胆固醇和 L-哌啶)在根生物量生长中起调节作用。此外,这项研究揭示了八种磷脂酰胆碱和磷脂酰甘油代谢物,尽管它们与生物质生产不相结合,但它们在缺氮条件下增加的生物质生产中发挥了关键作用。总体而言,组学整合的 GSM 为促进玉米根的胁迫条件分析和设计更好的耐胁迫玉米基因型提供了一种有前途的工具。玉米根 GSM 预测几种代谢物(L-蛋氨酸、L-天冬酰胺、L-赖氨酸、胆固醇和 L-哌啶)在根生物量生长中起调节作用。此外,这项研究揭示了八种磷脂酰胆碱和磷脂酰甘油代谢物,尽管它们与生物质生产不相结合,但它们在缺氮条件下增加的生物质生产中发挥了关键作用。总体而言,组学整合的 GSM 为促进玉米根的胁迫条件分析和设计更好的耐胁迫玉米基因型提供了一种有前途的工具。在缺氮条件下提高生物量产量中发挥了关键作用。总体而言,组学整合的 GSM 为促进玉米根的胁迫条件分析和设计更好的耐胁迫玉米基因型提供了一种有前途的工具。在缺氮条件下提高生物量产量中发挥了关键作用。总体而言,组学整合的 GSM 为促进玉米根的胁迫条件分析和设计更好的耐胁迫玉米基因型提供了一种有前途的工具。
更新日期:2021-09-21
down
wechat
bug