当前位置: X-MOL 学术J. Ind. Eng. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microkinetic model validation for Fischer-Tropsch synthesis at methanation conditions based on steady state isotopic transient kinetic analysis
Journal of Industrial and Engineering Chemistry ( IF 6.1 ) Pub Date : 2021-09-23 , DOI: 10.1016/j.jiec.2021.09.017
Jonas Van Belleghem 1 , Jia Yang 2 , Pieter Janssens 1 , Jeroen Poissonnier 1 , De Chen 2 , Guy B. Marin 1 , Joris W. Thybaut 1
Affiliation  

A Single-Event MicroKinetic (SEMK) model has been extended towards the simulation of Steady State Isotopic Transient Kinetic Analysis (SSITKA) data for Co catalyzed Fischer-Tropsch Synthesis (FTS). The extended model considers two types of sites and both direct and H-assisted CO dissociation. Regression of the model parameters to the data obtained from 17 steady state and 11 SSITKA experiments resulted in physicochemically meaningful estimates for the activation energies and atomic chemisorption enthalpies. The application of the phenomenological UBI-QEP method allows to physically interpret the nature of the two site types considered in the model, i.e., terrace and step sites. A reaction path analysis shows that over 80 percent of the CO reacts on the step sites. Furthermore, chain growth exclusively occurs on these sites. The terrace sites are less reactive for CO dissociation and are identified as responsible for methane production. A fraction of the alkenes, produced on the step sites, is hydrogenated to alkanes on the terrace sites. Based on model simulations, the metal particle size effect, i.e., a lower TOF, higher methane selectivity and increasing alkane to alkene ratio with decreasing metal particle size, is attributed to an increasing relative importance of the terrace sites on the reaction kinetics.



中文翻译:

基于稳态同位素瞬态动力学分析的甲烷化条件下费-托合成的微动力学模型验证

单事件微动力学 (SEMK) 模型已扩展到模拟 Co 催化的费托合成 (FTS) 的稳态同位素瞬态动力学分析 (SSITKA) 数据。扩展模型考虑了两种类型的位点以及直接和 H 辅助的 CO 解离。将模型参数回归到从 17 个稳态和 11 个 SSITKA 实验中获得的数据,得出了活化能和原子化学吸附焓的物理化学上有意义的估计值。现象学 UBI-QEP 方法的应用允许物理解释模型中考虑的两种场地类型的性质,即梯田和台阶场地。反应路径分析表明,超过 80% 的 CO 在阶梯位点发生反应。此外,链增长仅发生在这些站点上。梯田位点对 CO 解离的反应性较低,并被确定为产生甲烷的原因。在台阶位置产生的一部分烯烃在梯田位置被氢化成烷烃。基于模型模拟,金属颗粒尺寸效应,即较低的 TOF、较高的甲烷选择性和随着金属颗粒尺寸的减小而增加的烷烃与烯烃的比率,归因于平台位点对反应动力学的相对重要性增加。

更新日期:2021-11-17
down
wechat
bug