当前位置: X-MOL 学术J. Energy Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Achieving efficient N2 electrochemical reduction by stabilizing the N2H* intermediate with the frustrated Lewis pairs
Journal of Energy Chemistry ( IF 13.1 ) Pub Date : 2021-09-22 , DOI: 10.1016/j.jechem.2021.09.020
Zhe Chen 1, 2 , Jingxiang Zhao 3 , Yan Jiao 4 , Tao Wang 2 , Lichang Yin 1, 5
Affiliation  

Electrocatalytic nitrogen reduction reaction (eNRR) with sustainable energy under ambient conditions represents an attractive approach to producing ammonia, but the design of the-state-of-the-art electrocatalyst with high efficiency and selectivity still faces formidable challenges. In contrast to traditional eNRR catalyst design strategies focusing on N≡N triple bond activation, we herein theoretically proposed an alternative strategy to improve eNRR performance via stabilizing the N2H* intermediate using catalysts with the frustrated Lewis pairs (FLPs), i.e., transition metal (TM) atoms and boron (B) atom co-doped 2D black phosphorus (TM-B@BP). Our density functional theory (DFT) results reveal that the TM atom donates electrons to the adsorbed N2 molecule, while B atom provides empty orbital to stabilize the adsorption of N2H* intermediate in TM-B@BP. This framework successfully identified five promising candidates (i.e., Ti-B@BP, V-B@BP, Cr-B@BP, Mn-B@BP and Fe-B@BP) with low theoretical limiting potentials (−0.60, −0.41, −0.45, −0.43 and −0.50 V) and high selectivity for eNRR. We believe that the intermediate stabilization strategy introduced in current work offers a new opportunity to achieve accelerated and cost-effective ammonia synthesis with electrocatalysis.



中文翻译:

通过用受挫的路易斯对稳定 N2H* 中间体,实现高效的 N2 电化学还原

在环境条件下使用可持续能源的电催化氮还原反应 (eNRR) 代表了一种有吸引力的生产氨的方法,但具有高效率和选择性的最先进电催化剂的设计仍然面临着艰巨的挑战。与专注于 N≡N 三键活化的传统 eNRR 催化剂设计策略相比,我们在此理论上提出了一种替代策略,通过使用具有受挫路易斯对 (FLP) 的催化剂稳定 N 2 H* 中间体,即过渡金属(TM)原子和硼(B)原子共掺杂二维黑磷(TM-B@BP)。我们的密度泛函理论 (DFT) 结果表明 TM 原子​​向吸附的 N 2提供电子分子,而 B 原子提供空轨道以稳定 N 2 H* 中间体在 TM-B@BP 中的吸附。该框架成功地确定了具有低理论极限电位(-0.60、-0.41、 -0.45、-0.43 和 -0.50 V)和对 eNRR 的高选择性。我们相信,当前工作中引入的中间稳定策略为通过电催化实现加速且具有成本效益的氨合成提供了新的机会。

更新日期:2021-09-23
down
wechat
bug