当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries
Nano Energy ( IF 17.6 ) Pub Date : 2021-09-22 , DOI: 10.1016/j.nanoen.2021.106542
Bereket Woldegbreal Taklu, Wei-Nien Su, Yosef Nikodimos, Keseven Lakshmanan, Nigusu Tiruneh Temesgen, Pei-Xuan Lin, Shi-Kai Jiang, Chen-Jui Huang, Di-Yan Wang, Hwo-Shuenn Sheu, She-Huang Wu, Bing Joe Hwang

The decent ductileness, high ionic conductivity, low cost, and versatility over synthesis methods make Li-argyrodite a promising for all-solid-state lithium batteries. However, its serious interfacial incompatibility with Li anode, dendrite growth, and intrinsic air instability impedes its practicability. Herein, we report a CuCl dual doped Li-argyrodite sulfide superb-conductor (Li6+3xP1−xCuxS5−xCl1+x) prepared to overcome these issues via ball-mill free synthesis approach. The maximum Li+ conductivity of 4.34 mS cm−1 at room temperature with ultrawide voltage stability up to 8 V vs. Li/Li+ was achieved in Li6.3P0.9Cu0.1S4.9Cl1.1 (LPSC-1) via a both composite and planar electrode system and can suppress dendrite formation at a current density of 3 mA cm−2 at 50 оC. The symmetrical cell cycled at 0.1 and 1 mA cm−2 also demonstrates remarkable reversibility with negligible overpotential alteration for more than 2400 h and 400 h. An ex-situ XPS and AC impedance analysis proved enhanced interfacial compatibility at Li | SE and achieved a critical current density of 3 mA cm−2. More interestingly, incorporating soft acid Cu in LPSC-1 boosts the air stability and suppresses H2S generation by two-folds. The XRD for the LPSC-1 before and after air exposure proves the decrease in the oxophilicity of the sulfide solid electrolyte.



中文翻译:

双CuCl掺杂的银铅矿超导体提高全固态锂金属电池的界面兼容性和空气稳定性

良好的延展性、高离子电导率、低成本和合成方法的多功能性使锂银锰矿成为全固态锂电池的有希望的。然而,其与锂负极严重的界面不相容性、枝晶生长和内在的空气不稳定性阻碍了其实用性。在此,我们报告了一种 CuCl 双掺杂 Li-硫银矿硫化物超级导体(Li 6+3x P 1-x Cu x S 5-x Cl 1+x),通过无球磨合成方法来克服这些问题室温下最大 Li +电导率为 4.34 mS cm -1,超宽电压稳定性高达 8 V vs. Li/Li +通过复合和平面电极系统在 Li 6.3 P 0.9 Cu 0.1 S 4.9 Cl 1.1 (LPSC-1) 中实现,并且可以在 3 mA cm -2的电流密度下在 50  ® C 下抑制枝晶形成。对称电池循环在 0.1 和 1 mA cm -2也表现出显着的可逆性,超过 2400 小时和 400 小时的过电位变化可以忽略不计。异地 XPS 和交流阻抗分析证明增强了 Li | 的界面兼容性 SE 并实现了 3 mA cm -2的临界电流密度。更有趣的是,在 LPSC-1 中加入软酸 Cu 可提高空气稳定性并抑制 H 2S代由两倍。LPSC-1 在暴露于空气之前和之后的 XRD 证明硫化物固体电解质的亲氧性降低。

更新日期:2021-09-30
down
wechat
bug