当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime
Light: Science & Applications ( IF 19.4 ) Pub Date : 2021-09-22 , DOI: 10.1038/s41377-021-00622-6
Weiwei Tang 1, 2 , Wei Lyu 1, 2 , Jinsheng Lu 3 , Fengjiang Liu 1, 2 , Jiyong Wang 1, 2 , Wei Yan 1, 2 , Min Qiu 1, 2
Affiliation  

Realizing optical manipulation of microscopic objects is crucial in the research fields of life science, condensed matter physics, and physical chemistry. In non-liquid environments, this task is commonly regarded as difficult due to strong adhesive surface force (~µN) attached to solid interfaces that makes tiny optical driven force (~pN) insignificant. Here, by recognizing the microscopic interaction mechanism between friction force—the parallel component of surface force on a contact surface—and thermoelastic waves induced by pulsed optical absorption, we establish a general principle enabling the actuation of micro-objects on dry frictional surfaces based on the opto-thermo-mechanical effects. Theoretically, we predict that nanosecond pulsed optical absorption with mW-scale peak power is sufficient to tame µN-scale friction force. Experimentally, we demonstrate the two-dimensional spiral motion of gold plates on micro-fibers driven by nanosecond laser pulses, and reveal the rules of motion control. Our results pave the way for the future development of micro-scale actuators in non-liquid environments.



中文翻译:

干胶状态下的微型光热机械驱动

实现对微观物体的光学操纵在生命科学、凝聚态物理和物理化学等研究领域至关重要。在非液体环境中,由于附着在固体界面上的强粘附表面力 (~µN) 使微小的光学驱动力 (~pN) 变得微不足道,因此这项任务通常被认为是困难的。在这里,通过识别摩擦力(接触表面上的表面力的平行分量)与脉冲光吸收引起的热弹性波之间的微观相互作用机制,我们建立了一个通用原理,使干摩擦表面上的微型物体能够基于光热机械效应。从理论上讲,我们预测具有 mW 级峰值功率的纳秒脉冲光吸收足以抑制 µN 级摩擦力。通过实验,我们展示了由纳秒激光脉冲驱动的微纤维上金板的二维螺旋运动,并揭示了运动控制规则。我们的结果为非液体环境中微型执行器的未来发展铺平了道路。

更新日期:2021-09-22
down
wechat
bug