当前位置: X-MOL 学术Adv. Healthcare Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metal–Organic Framework Modified MoS2 Nanozyme for Synergetic Combating Drug-Resistant Bacterial Infections via Photothermal Effect and Photodynamic Modulated Peroxidase-Mimic Activity
Advanced Healthcare Materials ( IF 10.0 ) Pub Date : 2021-09-22 , DOI: 10.1002/adhm.202101698
Zi-Yang Liao 1 , Ya-Mu Xia 1 , Jia-Min Zuo 1 , Tao Wang 1 , Da-Tong Hu 2 , Ming-Zhe Li 1 , Ning-Ning Shao 1 , Dong Chen 1 , Kai-Xin Song 1 , Xuan Yu 1 , Xin-Yue Zhang 1 , Wei-Wei Gao 1, 3
Affiliation  

Bacterial infections have become major threats to public health all over the world. With the emergence of antibiotic resistance, it is urgent to develop novel antimicrobial materials to efficiently overcome drug resistance with high bactericidal activity. In this work, UiO-66-NH-CO-MoS2 nanocomposites (UNMS NCs) are constructed through the amidation reaction. The UNMS NCs are positively charged which is beneficial for capturing and restricting bacteria. Significantly, UNMS NCs possess a synergistic bactericidal efficiency based on near-infrared irradiation (808 nm) regulated combination of photothermal, photodynamic, and peroxidase-like enzymatic activities. Both the photodynamic property and nanozymatic activity of UNMS NCs can lead to the generation of reactive oxygen species. The UNMS NCs show high catalytic activity in a wide pH range and exhibit excellent antibacterial ability against ampicillin-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus with negligible cytotoxicity. Interestingly, due to the 808 nm irradiation-induced hyperthermia in the presence of UNMS NCs, the glutathione oxidation process can be accelerated, resulting in bacterial death more easily. Mice wound models are established to further manifest that UNMS NCs can promote wound healing with good biosafety in living systems.

中文翻译:

金属-有机框架修饰的 MoS2 纳米酶通过光热效应和光动力调节过氧化物酶模拟活性协同对抗耐药细菌感染

细菌感染已成为全球公共卫生的主要威胁。随着抗生素耐药性的出现,迫切需要开发新型抗菌材料,以有效克服具有高杀菌活性的耐药性。在这项工作中,UiO-66-NH-CO-MoS 2纳米复合材料(UNMS NCs)是通过酰胺化反应构建的。UNMS NC 带正电荷,有利于捕获和限制细菌。值得注意的是,UNMS NCs 具有基于近红外辐射 (808 nm) 调节的光热、光动力和过氧化物酶样酶活性组合的协同杀菌效率。UNMS NCs的光动力特性和纳米酶活性都可以导致活性氧的产生。UNMS NCs在较宽的pH范围内显示出高催化活性,并对耐氨苄青霉素的大肠杆菌和耐甲氧西林的金黄色葡萄球菌表现出优异的抗菌能力具有可忽略的细胞毒性。有趣的是,由于在 UNMS NCs 存在下 808 nm 辐射诱导的高温,谷胱甘肽的氧化过程可以加速,更容易导致细菌死亡。建立小鼠伤口模型以进一步证明 UNMS NCs 可以在生命系统中以良好的生物安全性促进伤口愈合。
更新日期:2021-09-22
down
wechat
bug