当前位置: X-MOL 学术arXiv.cs.ET › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Emulation of Synaptic Plasticity on Cobalt based Synaptic Transistor for Neuromorphic Computing
arXiv - CS - Emerging Technologies Pub Date : 2021-09-20 , DOI: arxiv-2109.09613
P. Monalisha, P. S. Anil Kumar, X. Renshaw Wang, S. N. Piramanayagam

Neuromorphic Computing (NC), which emulates neural activities of the human brain, is considered for low-power implementation of artificial intelligence. Towards realizing NC, fabrication, and investigations of hardware elements such as synaptic devices and neurons are essential. Electrolyte gating has been widely used for conductance modulation by massive carrier injections and has proven to be an effective way of emulating biological synapses. Synaptic devices, in the form of synaptic transistors, have been studied using a wide variety of materials. However, studies on metallic channel based synaptic transistors remain vastly unexplored. Here, we have demonstrated a three-terminal cobalt-based synaptic transistor to emulate biological synapse. We realized gating controlled multilevel, nonvolatile conducting states in the proposed device. The device could successfully emulate essential synaptic functions demonstrating short-term and long-term plasticity. A transition from short-term memory to long-term memory has been realized by tuning gate pulse amplitude and duration. The crucial cognitive behavior viz., learning, forgetting, and relearning, has been emulated, showing resemblance to the human brain. Along with learning and memory, the device showed dynamic filtering behavior. These results provide an insight into the design of metallic channel based synaptic transistors for neuromorphic computing.

中文翻译:

用于神经形态计算的基于钴的突触晶体管的突触可塑性仿真

模拟人脑神经活动的神经形态计算 (NC) 被认为是人工智能的低功耗实现。为了实现 NC,突触设备和神经元等硬件元素的制造和研究是必不可少的。电解质门控已被广泛用于通过大量载流子注入进行电导调制,并已被证明是一种模拟生物突触的有效方法。突触晶体管形式的突触器件已经使用多种材料进行了研究。然而,对基于金属通道的突触晶体管的研究仍然有很大的探索空间。在这里,我们展示了一种三端钴基突触晶体管来模拟生物突触。我们在所提出的设备中实现了门控控制的多级非易失性导电状态。该设备可以成功模拟基本的突触功能,显示出短期和长期的可塑性。通过调整门脉冲幅度和持续时间,实现了从短期记忆到长期记忆的转变。关键的认知行为,即学习、遗忘和重新学习,已经被模仿,表现出与人脑的相似之处。随着学习和记忆,该设备表现出动态过滤行为。这些结果为用于神经形态计算的基于金属通道的突触晶体管的设计提供了见解。和重新学习,已被模仿,显示出与人脑的相似之处。随着学习和记忆,该设备表现出动态过滤行为。这些结果为用于神经形态计算的基于金属通道的突触晶体管的设计提供了见解。和重新学习,已被模仿,显示出与人脑的相似之处。随着学习和记忆,该设备表现出动态过滤行为。这些结果为用于神经形态计算的基于金属通道的突触晶体管的设计提供了见解。
更新日期:2021-09-21
down
wechat
bug