当前位置: X-MOL 学术J. Struct. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Centrifuge modelling of thrust systems in the brittle crust: Role of frictional décollement geometry
Journal of Structural Geology ( IF 3.1 ) Pub Date : 2021-09-20 , DOI: 10.1016/j.jsg.2021.104450
Flavio Milazzo 1 , Cristian Cavozzi 1 , Giacomo Corti 2 , Daniele Maestrelli 2 , Fabrizio Storti 1
Affiliation  

Centrifuge analogue modelling has provided significant insights into the evolution and architecture of fold and thrust systems. However, all previous works focused on the deformation of viscous and/or plastic layers, and did not analyze the development of structures in the brittle crust. In this work, we present the results of analogue centrifuge models reproducing compression of purely brittle upper crustal layers. We run enhanced gravity models investigating the role exerted by frictional décollements on the evolution and architecture of thrusting and compared the results with new normal-gravity models with similar set-up. In line with the results of previous experimental works, our models show that the presence of a low-friction basal décollement significantly influences the evolution and pattern of thrust systems. By reducing the basal friction of the experimental wedge or the sector of the wedge where the low-friction décollement is located, this layer promotes experimental wedges with low tapers and low heights in the inner portion. Moreover, when a low-friction basal décollement occurs, the tectonic wedge is characterized by an increase in wavelength of thrust sheets toward the foreland, compared to the purely brittle models. Results show a good comparison between centrifuge and normal gravity models, indicating that the centrifuge technique can be successfully used to model shortening in the brittle crust and therefore to analyze the evolution and architecture of thrust systems.



中文翻译:

脆性地壳中推力系统的离心机建模:摩擦减退几何的作用

离心机模拟建模为折叠和推力系统的演变和结构提供了重要的见解。然而,之前的所有工作都集中在粘性和/或塑性层的变形上,并没有分析脆性地壳中结构的发展。在这项工作中,我们展示了模拟离心机模型的结果,该模型再现了纯脆性上地壳层的压缩。我们运行增强的重力模型,研究摩擦下降对推力的演变和结构的作用,并将结果与​​具有类似设置的新法向重力模型进行比较。与先前实验工作的结果一致,我们的模型表明,低摩擦基底脱扣的存在显着影响了推力系统的演变和模式。通过减少实验楔块的基础摩擦或低摩擦脱扣所在的楔块部分,该层促进了内部具有低锥度和低高度的实验楔块。此外,与纯脆性模型相比,当发生低摩擦的基底退缩时,构造楔的特征是向前陆推进的推力片的波长增加。结果显示离心和正常重力模型之间的良好比较,表明离心技术可以成功地用于模拟脆性地壳中的缩短,从而分析推力系统的演化和结构。该层促进了内部具有低锥度和低高度的实验楔。此外,与纯脆性模型相比,当发生低摩擦的基底退缩时,构造楔的特征是向前陆推进的推力片的波长增加。结果表明离心和正常重力模型之间的比较良好,表明离心技术可以成功地用于模拟脆性地壳中的缩短,从而分析推力系统的演化和结构。该层促进了内部具有低锥度和低高度的实验楔。此外,与纯脆性模型相比,当发生低摩擦的基底退缩时,构造楔的特征是向前陆推进的推力片的波长增加。结果表明离心和正常重力模型之间的比较良好,表明离心技术可以成功地用于模拟脆性地壳中的缩短,从而分析推力系统的演化和结构。

更新日期:2021-09-24
down
wechat
bug