当前位置: X-MOL 学术Chemosphere › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerated charge transfer in well-designed S-scheme Fe@TiO2/Boron carbon nitride heterostructures for high performance tetracycline removal and selective photo-reduction of CO2 greenhouse gas into CH4 fuel
Chemosphere ( IF 8.8 ) Pub Date : 2021-09-21 , DOI: 10.1016/j.chemosphere.2021.132301
Amit Kumar 1 , Priya Rittika Thakur 2 , Gaurav Sharma 3 , Dai-Viet N Vo 4 , Mu Naushad 5 , Tetiana Tatarchuk 6 , Alberto García-Peñas 7 , Bing Du 8 , Florian J Stadler 8
Affiliation  

Designing and fabrication of smart hybrid multifunctional materials for energy/fuel production and environmental detoxification is indeed of great significance for sustainable development. Herein, we synthesized a new well-structured S-scheme heterostructure Fe@TiO2/Boron Carbon nitride (FT/BCN) with high performance tetracycline degradation and selective CO2 photo-reduction to CH4. Under visible light irradiation, 96.3% tetracycline was degraded in 60 min using best performing FT30/BCN sample with a high 83.2% total organic carbon removal in 2 h. The tetracycline degradation rate for FT30/BCN composite catalyst was ∼7 times than bare boron carbon nitride (BCN). The impact of reaction parameters as pH, presence of interfering electrolytes, light source and water matrix was also investigated. The FT30/BCN photocatalyst shows dramatic improvement in CO2 photoreduction as exhibited in 24.7 μmol g−1 h−1 CH4 and 2.4 μmol g−1 h−1 CO evolutions with optimal 91.1% CH4 selectivity. Pure BCN shows a poor 39.1% selectivity. Further, effect of alkali activation, CO2/H2O feed ratio, reducing agent and light source onto CH4 production and selectivity was also investigated. The CH4 evolution and selectivity was improved because of enhanced visible light absorption, high adsorption potential, charge carrier separation and high reducing power of photogenerated electrons induced by an effective S-scheme heterojunction between Fe@TiO2 and boron carbon nitride. An S-scheme (step-scheme) charge transfer mechanism is here operative both during tetracycline removal and CO2 reduction. The drug degradation route and photocatalytic mechanism for antibiotic removal and CO2 reduction was also predicted.



中文翻译:

用于高性能四环素去除和 CO2 温室气体选择性光还原成 CH4 燃料的精心设计的 S 型 Fe@TiO2/硼碳氮化物异质结构中的加速电荷转移

设计和制造用于能源/燃料生产和环境解毒的智能混合多功能材料对于可持续发展确实具有重要意义。在此,我们合成了一种新型结构良好的 S 型异质结构 Fe@TiO 2 /硼碳氮化物 (FT/BCN),具有高性能四环素降解和选择性 CO 2光还原为 CH 4。在可见光照射下, 使用性能最佳的 FT30/BCN 样品在 60 分钟内降解了 96.3% 的四环素,在 2 小时内去除了 83.2% 的总有机碳。FT30/BCN 复合催化剂的四环素降解率是裸硼碳氮化物(BCN)的 7 倍。还研究了反应参数如 pH 值、干扰电解质的存在、光源和水基质的影响。FT30/BCN 光催化剂在 CO 2 光还原方面表现出显着改善,如在 24.7 μmol g -1 h -1 CH 4和 2.4 μmol g -1 h -1 CO析出中所展示的,具有最佳的 91.1% CH 4选择性。纯 BCN 显示出较差的 39.1% 选择性。此外,碱活化的影响,CO还研究了 2 /H 2 O 进料比、还原剂和光源对 CH 4 的产生和选择性。由于 Fe@TiO 2和碳氮化硼之间的有效 S 型异质结引起的可见光吸收增强、高吸附电位、电荷载流子分离和光生电子的高还原能力,CH 4 的演化和选择性得到改善。S-方案(分步方案)电荷转移机制在四环素去除和CO 2还原期间均起作用。还预测了抗生素去除和CO 2还原的药物降解途径和光催化机制。

更新日期:2021-09-21
down
wechat
bug