当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance analysis of a high-efficiency multi-bed active magnetic regenerator device
Applied Thermal Engineering ( IF 6.4 ) Pub Date : 2021-09-20 , DOI: 10.1016/j.applthermaleng.2021.117569
M. Masche 1 , J. Liang 1 , S. Dall'Olio 2 , K. Engelbrecht 1 , C.R.H. Bahl 1
Affiliation  

We present the performance of an active magnetic regenerator prototype with a multi-bed concept and parallel flow circuit. The prototype applies a two-pole permanent magnet (maximum magnetic flux density of 1.44 T) that rotates over 13 tapered regenerator beds mounted on a laminated iron yoke ring. Each bed is filled with about 262 g of spherical particles, distributed in layers of ten alloys of La(Fe,Mn,Si)13Hy (CALORIVAC HS) with different Curie temperatures. Other important features are the solenoid valves, the monitoring of the temperatures exiting each bed at the cold side, and a torque meter used to measure the magnetic power required to drive the cycle. The opening behavior of the solenoid valves (i.e., the blow fraction) could be adjusted to correct flow imbalances in each bed. The device provided a maximum cooling power of about 815 W at a cycle frequency of 1.2 Hz, a utilization of 0.36, and a hot reservoir temperature of 295 K while maintaining a 5.6 K-temperature span with a coefficient of performance of 6.0. In this case, the second-law efficiency was 11.6%. The maximum second-law efficiency of 20.5%, which represents one of the largest for a magnetocaloric device, was obtained at a cycle frequency of 0.5 Hz, a utilization of 0.34, and a hot reservoir temperature of 295 K at a temperature span of 10.3 K. Under these conditions, the device absorbed a cooling load of 288 W with a coefficient of performance of 5.7. It was also shown that an unbalanced flow due to different hydraulic resistance through the beds can cause cold side outlet temperature variations, which reduce the system performance, demonstrating the importance of a well-functioning, balanced flow system.



中文翻译:

一种高效多床主动磁蓄热装置的性能分析

我们展示了具有多床概念和平行流动回路的主动磁蓄热器原型的性能。该原型应用了一个两极永磁体(最大磁通密度为 1.44 T),可在安装在叠片铁轭环上的 13 个锥形蓄热床上旋转。每个床都装有大约 262 g 的球形颗粒,分布在十种 La(Fe,Mn,Si) 13 H y合金的层中(CALORIVAC HS) 具有不同的居里温度。其他重要功能包括电磁阀、冷侧每张床的温度监测以及用于测量驱动循环所需磁功率的扭矩计。可以调整电磁阀的打开行为(即吹气分数)以校正每个床中的流量不平衡。该设备在 1.2 Hz 的循环频率、0.36 的利用率和 295 K 的热储层温度下提供约 815 W 的最大冷却功率,同时保持 5.6 K 的温度跨度和 6.0 的性能系数。在这种情况下,第二定律效率为 11.6%。在 0.5 Hz 的循环频率、0.34 的利用率下获得了 20.5% 的最大第二定律效率,这是磁热器件最大的第二定律效率之一,在 10.3 K 的温度跨度下,热储器温度为 295 K。在这些条件下,该设备吸收了 288 W 的冷却负载,性能系数为 5.7。研究还表明,由于通过床层的不同液压阻力导致的不平衡流动会导致冷侧出口温度变化,从而降低系统性能,证明了运行良好、平衡的流动系统的重要性。

更新日期:2021-09-27
down
wechat
bug