当前位置: X-MOL 学术Adsorption › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The binding interaction of protein on a charged surface using Poisson–Boltzmann equation: lysozyme adsorption onto SBA-15
Adsorption ( IF 3.3 ) Pub Date : 2021-09-17 , DOI: 10.1007/s10450-021-00344-6
Marlon de Souza Gama 1 , Frederico Wanderley Tavares 1, 2 , Amaro Gomes Barreto Jr. 2
Affiliation  

A modified Poisson–Boltzmann model (PBEm) can be successfully used to determine the binding strength parameter, i.e., (Henry constant, K), for the protein adsorbent interaction in ion-exchanger columns. Lysozyme has been employed as a standard protein for the adsorption in a mesoporous silica adsorbent. The density of aminoacid groups and silanol groups were used as inputs to calculate the protein charge density as a function of pH, salt concentration, and type of salt. Using the electrostatic potential provided as solving the PBEm with the protein charge surface and silanol wall as boundaries conditions, we calculated the K through the potential of mean force to describe the whole set of experimental data. The unique estimated parameter in this work was the volumetric accessible surface area from isotherm data for different electrolyte conditions. The results show that the protocol applied includes a pH and ionic strength dependence in the Langmuir isotherm. A sensibility test with different anions (\(\text {Cl}^{-}\), \(\text {Br}^{-}\), and \(\text {I}^{-}\)) showed an agreement with the Hofmeister series for the protein/adsorbent interaction. A modification in the electrolyte concentration and pH can change the behavior of the isotherm profile for a fixed value of saturation capacity, independently calculated for spheres packed in cylinders. The calculations provide here can be helpful for the optimization of the best condition for protein adsorption.



中文翻译:

蛋白质在带电表面上的结合相互作用使用泊松-玻尔兹曼方程:溶菌酶吸附到 SBA-15

改进的泊松-玻尔兹曼模型 (PBEm) 可成功用于确定离子交换柱中蛋白质吸附剂相互作用的结合强度参数,即(亨利常数,K)。溶菌酶已被用作在介孔二氧化硅吸附剂中吸附的标准蛋白质。氨基酸基团和硅烷醇基团的密度用作输入来计算作为 pH、盐浓度和盐类型函数的蛋白质电荷密度。使用以蛋白质电荷表面和硅烷醇壁为边界条件求解 PBEm 时提供的静电势,我们计算了K通过平均力的势能来描述整组实验数据。这项工作中唯一的估计参数是来自不同电解质条件的等温线数据的体积可及表面积。结果表明,所应用的协议包括朗缪尔等温线中的 pH 值和离子强度依赖性。不同阴离子(\(\text {Cl}^{-}\)\(\text {Br}^{-}\)\(\text {I}^{-}\) 的敏感性测试) 表明与 Hofmeister 系列的蛋白质/吸附剂相互作用一致。电解质浓度和 pH 值的修改可以改变饱和容量固定值的等温线曲线的行为,独立计算填充在圆柱体中的球体。此处提供的计算有助于优化蛋白质吸附的最佳条件。

更新日期:2021-09-20
down
wechat
bug