当前位置: X-MOL 学术Mater. Corros. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Corrosion properties of Ti3SiC2 and Ti3AlC2 in static liquid lead–bismuth eutectic at 500°C
Materials and Corrosion ( IF 1.8 ) Pub Date : 2021-09-20 , DOI: 10.1002/maco.202112586
Huiping Zhu 1 , Xudong Liu 1 , Baochen Chang 1 , Xiaobo Li 1 , Muran Qi 1 , Yifeng Wang 1 , Fenglei Niu 1 , Yan Ma 1 , Liangliang Lyu 2
Affiliation  

For lead-cooled fast reactors and accelerator-driven subcritical systems, the surface corrosion behavior of candidate structural materials in lead–bismuth eutectic (LBE) is a key issue, which determines whether the material is applicable. The candidate materials of two typical MAX phases, Ti3SiC2 and Ti3AlC2, were immersed in static LBE with saturated oxygen concentration at 500°C for up to 3000 h. The corrosion behaviors of Ti3SiC2 and Ti3AlC2 were analyzed by scanning electron microscope, energy-dispersive X-ray, X-ray diffraction, and Raman spectra. The experimental results showed that elements interdiffusion between LBE and sample matrix occurred on both Ti3SiC2 and Ti3AlC2 surfaces, which led to the formation of the diffusion layer. The dominant component of the diffusion layer is PbTiO3, which makes the corroded surface fragile in a stress environment. Besides, there were differences in structures of corroded sample surfaces between Ti3SiC2 and Ti3AlC2. The corrosion layer of Ti3SiC2 consisted of two layers, while only one single layer formed on Ti3AlC2 surfaces. The stable oxide layer consisting of SiO2 and TiO2 can protect Ti3SiC2 samples from further LBE corrosion and maintain the integrity of the surfaces. For Ti3AlC2 samples, it is hard to form a continuous Al2O3 protective layer, thus no stable oxide layer was detected on the corroded surfaces. Compared with Ti3AlC2, Ti3SiC2 showed better corrosion resistance in LBE.

中文翻译:

Ti3SiC2 和 Ti3AlC2 在 500°C 静态液态铅铋共晶中的腐蚀特性

对于铅冷快堆和加速器驱动的亚临界系统,候选结构材料在铅铋共晶(LBE)中的表面腐蚀行为是决定材料是否适用的关键问题。将两种典型 MAX 相的候选材料 Ti 3 SiC 2和 Ti 3 AlC 2浸入饱和氧浓度为 500°C 的静态 LBE 中长达 3000 小时。Ti 3 SiC 2和 Ti 3 AlC 2的腐蚀行为通过扫描电子显微镜、能量色散X射线、X射线衍射和拉曼光谱进行分析。实验结果表明,LBE与样品基体之间的元素相互扩散发生在Ti 3 SiC 2和Ti 3 AlC 2表面,从而导致了扩散层的形成。扩散层的主要成分是 PbTiO 3,它使腐蚀的表面在应力环境中变得脆弱。此外,Ti 3 SiC 2和Ti 3 AlC 2的腐蚀样品表面结构存在差异。Ti 3 SiC 2腐蚀层由两层组成,而在Ti 3 AlC 2表面上仅形成一层。由SiO 2和TiO 2组成的稳定氧化层可以保护Ti 3 SiC 2样品免受进一步的LBE腐蚀并保持表面的完整性。对于Ti 3 AlC 2样品,很难形成连续的Al 2 O 3保护层,因此在腐蚀表面上没有检测到稳定的氧化层。与Ti 3 AlC 2相比,Ti 3 SiC 2在LBE中表现出更好的耐腐蚀性。
更新日期:2021-09-20
down
wechat
bug