当前位置: X-MOL 学术Inorg. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Diversity in Small-Molecule Activation: The Adventure Continues
Inorganic Chemistry ( IF 4.6 ) Pub Date : 2021-09-20 , DOI: 10.1021/acs.inorgchem.1c02529
Peter W Roesky 1, 2 , Alison R Fout 1, 2
Affiliation  

This article is part of the Advances in Small-Molecule Activation special issue. The sustainable transformation of small molecules such as CO2, N2, O2, and CH4 into other products has always been central to endeavors in chemical science. Indeed, from an inorganic chemistry perspective, the catalytic activation of typically inert small molecules has had an evergreen presence in the research community. For instance, although established for more than a century, the Haber–Bosch process to convert N2 and H2 into NH4 is still one of the highlights of catalytic transformations and remains an area of active research, whether that be developments in new heterogeneous catalysts or in small-molecule homogeneous catalysts, or, indeed, theory. Despite the long history, the modern challenges of climate change, energy sustainability, and resource efficiency perhaps make the activation of small molecules more important than ever before. It is in this context that this curated Inorganic Chemistry Forum on Advances in Small-Molecule Activation is presented, one that we hope makes a timely contribution to the discussion of this critical and dynamic topic. This edition sits alongside other key works in the area, including a multivolume set of Inorganic Chemistry Forums,(1−3) which are the foundations of the present issue, an edited book summarized by the editor of this journal in 2006,(4) and a themed collection of Dalton Transactions issued in 2016.(5) Herein, we have taken the view that there is no sharp definition of a small molecule, not least because recent fundamental and applied work has broadened the scope of small-molecule activation beyond the classical examples. Moreover, the nature of catalysts has been significantly extended; besides transition-metal complexes, we have seen lanthanide and actinide metals, main-group metals, and nonmetals such as frustrated Lewis pairs (FLPs) intensively investigated as suitable reagents for small-molecule activation. Accordingly, with this Forum Issue, we showcase some recent developments, which include both classical challenges, such as nitrogen, oxygen, hydrogen, and C–H activation, and emerging fields, like FLPs. For instance, Borovik and co-workers address modern C–H bond activation with an emphasis on nonheme iron enzymes (DOI: 10.1021/acs.inorgchem.1c01754). An emerging field of small-molecule activation centers on the use of FLPs as activators, which Hevia and co-workers demonstrate through the use of a NHC/GaR3 FLP for the catalytic hydroboration of unsaturated organic molecules (DOI: 10.1021/acs.inorgchem.1c01276). A theoretical approach to the nature of the bonds in FLPs of oxorhenium and nitridorhenium complexes with B(C6F5)3 is presented by Ison and Tubb (DOI: 10.1021/acs.inorgchem.1c00911). Further, Szymczak and co-workers report on weak intramolecular Lewis acid/base interactions (DOI: 10.1021/acs.inorgchem.1c01382). Within the area of bioinspired N2 activation, Neidig, Song, and co-workers report a diferric [2Fe–2S] cluster, which displays catalytic activity toward dinitrogen reduction (DOI: 10.1021/acs.inorgchem.1c00683). Another bioinspired work presented by Latifi, de Visser, Tahsini, and co-workers focuses on a biomimetic nonheme iron(IV) oxo complex and its reactivity upon changing axial ligand coordination (DOI: 10.1021/acs.inorgchem.1c01312). A bimolecular O2 activation induced by a sterically encumbered polyoxovanadate-alkoxide is described by Matson and co-workers (DOI: 10.1021/acs.inorgchem.1c00887). A different activation of O2 by nickel(I) is shown by Limberg and co-workers (DOI: 10.1021/acs.inorgchem.0c03761). Among other examples, they present the formation of a superoxide nickel complex. Both topics, N2 and O2 activation, are covered in theoretical studies dealing with the multiple-bond character of pseudotetrahedral CoIII oxo and imide complexes presented by Anderson and co-workers (DOI: 10.1021/acs.inorgchem.1c01022). The activation of heavier chalcogens is described by Roesky and co-workers (DOI: 10.1021/acs.inorgchem.0c03609). Another approach to bioinspired chemistry is presented by Shafaat and Lewis. They report on the reversible electron transfer of a metalloprotein model for carbon monoxide dehydrogenase (DOI: 10.1021/acs.inorgchem.1c01323). Hydrogen activation, formation, and transformation is key for modern energy conversion. Karlin, Dey, and co-workers report on the nature of proton-transfer groups for the hydrogen evolution reaction in the presence of iron porphyrins (DOI: 10.1021/acs.inorgchem.1c01079). The role of electrocatalysts with redox-active ligands for H2 evolution is outlined by de Vivie-Riedle, Hess, and co-workers (DOI: 10.1021/acs.inorgchem.1c01157), while the reaction of η2-alkene complexes with H2 is addressed by Weller and co-workers (DOI: 10.1021/acs.inorgchem.0c03687). Xiang, Chen, and co-workers describe the reactivity of divalent ytterbium hydrido complexes (DOI: 10.1021/acs.inorgchem.1c00686), while Morris and Tsui outline the difference between transition metals and main group element hydrogen bonds (DOI: 10.1021/acs.inorgchem.1c00801). The topic of small-molecule activation is a large and ongoing research topic in which inorganic chemistry plays a critical role in the development of activators and catalysts. It is not possible to fully cover this broad field within this Inorganic Chemistry Forum. Our intention was rather to give insight into the cutting-edge research work from first-class authors working in different areas of small-molecule activation. Also, we hope this collection of research articles inspires others to contribute to this field of inorganic chemistry and to expand it with new ideas. Peter W. Roesky obtained his diploma in 1992 from the University of Würzburg and his doctoral degree from the Technical University of Munich (with Prof. W. A. Herrmann) in 1994. He was as a postdoc with Prof. T. J. Marks at Northwestern University (1995–1996). In 1999, he completed his habilitation at the University of Karlsruhe. As a full professor, he joined the faculty of chemistry and biochemistry at the Freie Universität Berlin in 2001. Since 2008, he has held the chair for inorganic functional materials at the University of Karlsruhe Institute of Technology. In 1999, Prof. Roesky received a Heisenberg scholarship from the German Science Foundation and, in 2000, a Karl-Winnacker scholarship. Since 2014, he has been a fellow of the Royal Society of Chemistry and, since 2020, a fellow of the European Academy of Science (EurAsc). In 2019, he received a JSPS Invitational Fellowships for Research in Japan and, in 2020, a Reinhart Koselleck Project from the German Science Foundation. Alison R. Fout graduated with a B.S. from Gannon University (2002) and a M.S. from the University of North Carolina, Charlotte (with Daniel Rabinovich in 2004). Alison obtained her Ph.D. from Indiana University under the tutelage of Daniel J. Mindiola (2009). She was a NIH Ruth Kirschstein and Mary Fieser Postdoctoral Fellow with Theodore A. Betley at Harvard University. She joined the faculty at the University of Illinois, Urbana–Champaign, in 2012, where she is currently an associate professor. Prof. Fout has been the recipient of an NSF CAREER award and a DOE Early Career Award and is a Sloan Scholar and a Camille Dreyfus Scholar. In 2018, she was also awarded the Emergent Investigator in Bioinorganic Chemistry including Medicinal Chemistry sponsored by the ACS Division of Inorganic Chemistry. This article references 5 other publications.

中文翻译:

小分子活化的多样性:冒险仍在继续

这篇文章是部分 小分子活化的进展特刊。将 CO 2、N 2、O 2和 CH 4等小分子可持续转化为其他产品一直是化学科学努力的核心。事实上,从无机化学的角度来看,典型惰性小分子的催化活化在研究界一直存在。例如,虽然建立了一个多世纪,但将 N 2和 H 2转化为 NH 4的 Haber-Bosch 过程仍然是催化转化的亮点之一,仍然是一个活跃的研究领域,无论是新的非均相催化剂还是小分子均相催化剂的发展,或者实际上是理论。尽管历史悠久,但气候变化、能源可持续性和资源效率等现代挑战可能使小分子的活化比以往任何时候都更加重要。正是在这种背景下,举办了这个关于小分子活化进展的无机化学论坛,我们希望它能为这一关键和动态主题的讨论做出及时的贡献。此版本与该地区的其他重要著作并列,包括多卷集《无机化学》论坛,(1−3)是本期的基础,本刊编辑在2006年总结的一本编辑书籍,(4)和道尔顿交易的主题合集2016 年发布。 (5) 在此,我们认为小分子没有明确的定义,尤其是因为最近的基础和应用工作将小分子激活的范围扩大到了经典例子之外。此外,催化剂的性质已显着扩展;除了过渡金属配合物外,我们还看到镧系元素和锕系金属、主族金属和非金属如受挫路易斯对 (FLPs) 作为小分子活化的合适试剂进行了深入研究。因此,在本期论坛中,我们展示了一些最新进展,其中包括经典挑战,如氮、氧、氢和 C-H 活化,以及新兴领域,如 FLP。例如,Borovik 及其同事通过强调非血红素铁酶来解决现代 C-H 键激活问题(DOI:10.1021/acs.inorgchem.1c01754)。小分子激活的新兴领域集中在使用 FLP 作为激活剂,Hevia 和同事通过使用 NHC/GaR 证明了这一点3 FLP 用于不饱和有机分子的催化硼氢化反应(DOI:10.1021/acs.inorgchem.1c01276)。Ison 和 Tubb (DOI: 10.1021/acs.inorgchem.1c00911) 提出了一种关于氧铼和氮化铼与 B(C 6 F 5 ) 3配合物的 FLP 中键性质的理论方法。此外,Szymczak 及其同事报告了弱分子内路易斯酸/碱相互作用(DOI:10.1021/acs.inorgchem.1c01382)。在仿生 N 2 领域内Neidig、Song 和同事报告了一种二铁 [2Fe-2S] 簇,它显示出对二氮还原的催化活性(DOI:10.1021/acs.inorgchem.1c00683)。Latifi、de Visser、Tahsini 和同事提出的另一项受生物启发的工作侧重于仿生非血红素铁 (IV) 氧代复合物及其在改变轴向配体配位时的反应性(DOI:10.1021/acs.inorgchem.1c01312)。Matson 及其同事描述了由空间位阻聚氧钒酸盐醇盐诱导的双分子 O 2活化(DOI:10.1021/acs.inorgchem.1c00887)。Limberg 及其同事展示了镍 (I)对 O 2的不同活化(DOI:10.1021/acs.inorgchem.0c03761)。在其他例子中,它们呈现了超氧化物镍络合物的形成。两个主题,N2和 O 2活化,涵盖在处理假四面体 Co III的多重键特性的理论研究中Anderson 及其同事提出的氧代和酰亚胺配合物(DOI:10.1021/acs.inorgchem.1c01022)。Roesky 及其同事描述了重硫属元素的活化(DOI:10.1021/acs.inorgchem.0c03609)。Shafaat 和 Lewis 提出了另一种仿生化学方法。他们报告了一氧化碳脱氢酶的金属蛋白模型的可逆电子转移(DOI:10.1021/acs.inorgchem.1c01323)。氢的活化、形成和转化是现代能源转换的关键。Karlin、Dey 和同事报告了在铁卟啉存在下析氢反应的质子转移基团的性质(DOI:10.1021/acs.inorgchem.1c01079)。具有氧化还原活性配体的电催化剂对 H 2 的作用de Vivie-Riedle、Hess 和同事概述了进化过程(DOI:10.1021/acs.inorgchem.1c01157),而Weller 和同事讨论了η 2 -烯烃配合物与 H 2的反应(DOI: 10.1021/acs.inorgchem.0c03687)。向、陈和同事描述了二价镱氢化物配合物的反应性(DOI:10.1021/acs.inorgchem.1c00686),而 Morris 和 Tsui 概述了过渡金属和主族元素氢键之间的区别(DOI:10.1021/acs .inorgchem.1c00801)。小分子活化是一个庞大且正在进行的研究课题,其中无机化学在活化剂和催化剂的开发中起着关键作用。在这个无机化学中不可能完全涵盖这个广泛的领域论坛。我们的目的是深入了解在小分子激活不同领域工作的一流作者的前沿研究工作。此外,我们希望这本研究文章集能激励其他人为无机化学领域做出贡献并用新的想法扩展它。Peter W. Roesky 于 1992 年获得维尔茨堡大学文凭,1994 年获得慕尼黑工业大学博士学位(与 WA Herrmann 教授)。他在西北大学与 TJ Marks 教授一起做博士后(1995- 1996)。1999 年,他完成了在卡尔斯鲁厄大学的培训。作为一名正教授,他于 2001 年加入柏林自由大学的化学和生物化学系。自 2008 年以来,他曾在卡尔斯鲁厄理工大学担任无机功能材料系主任。1999 年,Roesky 教授获得了德国科学基金会的海森堡奖学金,并于 2000 年获得了 Karl-Winnacker 奖学金。自 2014 年以来,他一直是英国皇家化学学会的会士,自 2020 年以来,他一直是欧洲科学院 (EurAsc) 的会士。2019 年,他获得了日本 JSPS 研究邀请奖学金,2020 年,他获得了德国科学基金会的 Reinhart Koselleck 项目。Alison R. Fout 毕业于 Gannon 大学(2002 年)并获得了北卡罗来纳大学夏洛特分校的硕士学位(2004 年与 Daniel Rabinovich 合作)。艾莉森获得了她的博士学位。来自印第安纳大学,师从 Daniel J. Mindiola (2009)。她是哈佛大学西奥多·A·贝特利 (Theodore A. Betley) 的 NIH Ruth Kirschstein 和 Mary Fieser 博士后研究员。她于 2012 年加入伊利诺伊大学厄巴纳-香槟分校,目前担任副教授。Fout 教授曾获得 NSF CAREER 奖和 DOE 早期职业奖,并且是 Sloan 学者和 Camille Dreyfus 学者。2018 年,她还被授予 ACS 无机化学部赞助的包括药物化学在内的生物无机化学紧急研究员。本文引用了 5 篇其他出版物。Fout 曾获得 NSF CAREER 奖和 DOE 早期职业奖,并且是 Sloan 学者和 Camille Dreyfus 学者。2018 年,她还被授予 ACS 无机化学部赞助的包括药物化学在内的生物无机化学紧急研究员。本文引用了 5 篇其他出版物。Fout 曾获得 NSF CAREER 奖和 DOE 早期职业奖,并且是 Sloan 学者和 Camille Dreyfus 学者。2018 年,她还被授予 ACS 无机化学部赞助的包括药物化学在内的生物无机化学紧急研究员。本文引用了 5 篇其他出版物。
更新日期:2021-09-20
down
wechat
bug