当前位置: X-MOL 学术J. Electroanal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electropolymerization process dependent poly(1,4-di(2-thienyl)benzene) based full spectrum activated photocathodes for efficient photoelectrochemical hydrogen evolution
Journal of Electroanalytical Chemistry ( IF 4.5 ) Pub Date : 2021-09-20 , DOI: 10.1016/j.jelechem.2021.115712
Jie Yang 1 , Qiang Zeng 1 , Binhao Qin 1 , Jianzhi Huang 1 , Xinrong Guo 1 , Lishi Wang 1
Affiliation  

Electrochemical surfaces are essential for photoelectrocatalytic processes occuring on semiconductor electrodes, which influence light harvesting capability and charge separation of photoelectrochemical (PEC) hydrogen evolution process. In this work, electrochemical processes through cyclic voltammetry (CV), chronoamperometry (CA) and amperometry (i-t) show different abilities to electropolymerization. It results in poly-1,4-bis(2-thienyl)benzene (PDTB) photoelectordes with various microporous structures and regulated S oxidation states. Benifiting from these effect factors, the light absorption ability and charge separation of PDTB photoelectordes are expanded and promoted. In particular, PDTB photoelectrodes prepared by CA with 1.23 eV band gap and strong light absorption (310–2500 nm) show the best photoelectrochemical activity with a charge transfer resistance of 7 Ω, a photocurrent of 0.9 mA cm−2 and increases the onset hydrogen production potential to 0.92 V. The incident photon to current efficiency (IPCE) can reach 14.16 % at 850 nm. It suggests that photoelectrodes from electropolymerization may offer a simple and efficient strategy by adjusting the degree of polymerization to get a promising low band gap semiconductor for efficient PEC water reduction.



中文翻译:

基于电聚合过程的聚(1,4-二(2-噻吩基)苯)全光谱活化光电阴极,用于高效光电化学析氢

电化学表面对于发生在半导体电极上的光电催化过程至关重要,这会影响光电化学 (PEC) 析氢过程的光收集能力和电荷分离。在这项工作中,电化学过程通过循环伏安法 (CV)、计时电流法 (CA) 和电流法 ( it) 显示出不同的电聚合能力。它导致聚 1,4-双 (2-噻吩基) 苯 (PDTB) 光电电极具有各种微孔结构和受调节的 S 氧化态。受益于这些影响因素,PDTB光电电极的光吸收能力和电荷分离能力得到扩展和促进。特别是,由CA制备的PDTB光电极具有1.23 eV带隙和强光吸收(310-2500 nm),显示出最好的光电化学活性,电荷转移电阻为7 Ω,光电流为0.9 mA cm -2并将起始产氢电位增加至 0.92 V。入射光子电流效率 (IPCE) 在 850 nm 处可达到 14.16%。这表明来自电聚合的光电极可以通过调整聚合度来提供一种简单有效的策略,以获得有前途的低带隙半导体,从而有效地减少 PEC 水。

更新日期:2021-11-11
down
wechat
bug