当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Additively Manufactured Deformation-Recoverable and Broadband Sound-Absorbing Microlattice Inspired by the Concept of Traditional Perforated Panels
Advanced Materials ( IF 29.4 ) Pub Date : 2021-09-17 , DOI: 10.1002/adma.202104552
Xinwei Li 1 , Xiang Yu 2 , Wei Zhai 1
Affiliation  

Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice-based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut-based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods.

中文翻译:

受传统穿孔板概念启发的增材制造变形可恢复和宽带吸声微晶格

噪音污染是一种非常有害的日常健康危害。吸音器,例如传统上使用的穿孔板,得到了广泛的应用。尽管如此,现代产品设计需要具有增强性能和多功能性的材料新颖性。增材制造的出现带来了功能材料设计基于结构而非化学的可能性。考虑到这一点,本文重新审视了穿孔板的传统概念,并将其与增材制造相结合,以开发具有额外抗冲击多功能性的新型微晶格吸声器。结构优化的微晶格表现出优异的宽带吸收,平均实验吸收系数为 0。77 在 1000 到 6300 Hz 的广泛频率范围内。广泛的模拟和实验揭示了基于粘性流动、热和结构阻尼耗散的吸收机制,而宽带能力则基于多个协同工作的共振模式。基于支柱的设计和基材的粘弹性也可以实现高达 30% 应变的高变形恢复。总体而言,微晶格的优异特性克服了传统吸收器中常见的权衡问题。此外,这项工作旨在提出一种新范式:使用现代方法重新审视新材料开发的旧概念。热和结构阻尼耗散,同时宽带能力在多个谐振模式协同工作。基于支柱的设计和基材的粘弹性也可以实现高达 30% 应变的高变形恢复。总体而言,微晶格的优异特性克服了传统吸收器中常见的权衡问题。此外,这项工作旨在提出一种新范式:使用现代方法重新审视新材料开发的旧概念。热和结构阻尼耗散,同时宽带能力在多个谐振模式协同工作。基于支柱的设计和基材的粘弹性也可以实现高达 30% 应变的高变形恢复。总体而言,微晶格的优异特性克服了传统吸收器中常见的权衡问题。此外,这项工作旨在提出一种新范式:使用现代方法重新审视新材料开发的旧概念。
更新日期:2021-11-01
down
wechat
bug