当前位置: X-MOL 学术J. Mater. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spontaneously-buckled microstructure of copper nanowire conductors for a highly stretchable heater
Journal of Materials Chemistry C ( IF 6.4 ) Pub Date : 2021-09-03 , DOI: 10.1039/d1tc03376j
Le Zhao 1 , Shihui Yu 1 , Junjun Li 1 , Zichen Song 1 , Muying Wu 2 , Xiuyu Wang 1 , Xiaohu Wang 3
Affiliation  

The applications of stretchable conductors, which spontaneously form microbuckles on flexible substrates in micro and nano manufacturing, flexible and stretchable electronic technology, medicine, and other fields, have attracted extensive attention. To demonstrate high-performance stretchable electrodes, a great deal of effort has been made in terms of high conductivity, high stretchable properties, and high durability. However, the application of stretchable electrodes remains challenging because the electrical conductivity degrades and is even lost when stretched due to induced mechanical tension and excessive deformation. This paper reports a highly stretchable and conductive electrode, fabricated using a polymer composite membrane (spun on the polymer substrate surface coated with a thin layer of Cu NWs and covered with a layer of chitosan), which is attached to the pre-draft elastomeric substrate and then releases the prestrain. The prepared electrode has excellent properties such as unchanged stretchable stability under 70% strain. In particular, the sheet resistance changes less than 13% at 175% strain and remains almost constant after 2500 stretchable cycles at the same strain. Finally, a stretchable heater based on the electrode was fabricated to verify the utility of the stretchable electrode, and the practicability of the stretchable conductor was confirmed through the circuit and human-wearable experiment.

中文翻译:

用于高度可拉伸加热器的铜纳米线导体的自发屈曲微结构

在柔性基板上自发形成微扣的可伸缩导体在微纳制造、柔性可伸缩电子技术、医学等领域的应用引起了广泛关注。为了展示高性能的可拉伸电极,在高导电性、高拉伸性能和高耐久性方面做出了大量努力。然而,可拉伸电极的应用仍然具有挑战性,因为由于诱导的机械张力和过度变形,导电性会降低,甚至在拉伸时会丢失。本文报道了一种高度可拉伸和导电的电极,它使用聚合物复合膜(在聚合物基底表面涂上一层薄薄的 Cu 纳米线并覆盖一层壳聚糖)制造,它附着在预拉伸弹性体基材上,然后释放预应变。制备的电极具有优异的性能,例如在 70% 应变下可拉伸稳定性不变。特别是,薄层电阻在 175% 应变下的变化小于 13%,并且在相同应变下 2500 次可拉伸循环后几乎保持不变。最后,制作了基于电极的可拉伸加热器,验证了可拉伸电极的实用性,并通过电路和人体可穿戴实验验证了可拉伸导体的实用性。薄层电阻在 175% 应变下的变化小于 13%,并且在相同应变下 2500 次可拉伸循环后几乎保持不变。最后,制作了基于电极的可拉伸加热器,验证了可拉伸电极的实用性,并通过电路和人体可穿戴实验验证了可拉伸导体的实用性。薄层电阻在 175% 应变下的变化小于 13%,并且在相同应变下 2500 次可拉伸循环后几乎保持不变。最后,制作了基于电极的可拉伸加热器,验证了可拉伸电极的实用性,并通过电路和人体可穿戴实验验证了可拉伸导体的实用性。
更新日期:2021-09-17
down
wechat
bug